ALLEN-BRADLEY

1771 Control Coprocessor
(Cat. No. 1771-DMC, -DMC1, -DMC4, and -DXPS)

User Manual

Important User Information

Because of the variety of uses for the products described in this
publication, those responsible for the application and use of this control
equipment must satisfy themselves that all necessary steps have been
taken to assure that each application and use meets all performance and
safety requirements, including any applicable laws, regulations, codes,
and standards.

The illustrations, charts, sample programs, and layout examples shown in
this guide are intended solely for purposes of example. Since there are
many variables and requirements associated with any particular
installation, Allen-Bradley does not assume responsibility or liability

(to include intellectual property liability) for actual use based on the
examples shown in this publication.

Allen-Bradley publication SGI-1.1, Safety Guidelines for the Application,
Installation, and Maintenance of Solid State Confmehilable from

your local Allen-Bradley office), describes some important differences
between solid-state equipment and electromechanical devices that should
be taken into consideration when applying products such as those
described in this publication.

Reproduction of the contents of this copyrighted publication, in whole
or in part, without written permission of Allen-Bradley Company, Inc.
is prohibited.

Throughout this manual, we use notes to make you aware of safety
considerations:

circumstances that can lead to personal injury or death,

Q ATTENTION: Identifies information about practices or
property damage, or economic loss.

Attention statements help you to:

= identify a hazard
= avoid the hazard
= recognize the consequences

Important: Identifies information that is critical for successful application
and understanding of the product.

DOS is a registerd trademark of MicroSoft

IBM is a registered trademark of International Business Machines Corporation

Ethernet is a registered trademark of Digital Equipment Corporation

0S-9 is a trademark of Microware Systems Corporation

PLC, PLC-2, PLC-3, and PLC-5 are registered trademarks of Allen-Bradley Company, Inc.

INTERCHANGE, PLC-5/11, PLC-5/20, PLC-5/20E, PLC-5/30, PLC-5/40, PLC-5/40E, PLC-5/40L,
PLC-5/60, PLC-5/60L, PLC-5/80, PLC-5/80E, and PLC-5/250 are trademarks of Allen-Bradley Company, Inc.

Summary of Changes

Summary of Changes

This edition of this publication contains new and updated information.

To help you find new and updated information in this manual, we have
included change bars as shown to the left of this paragraph.

New Information

For detailed information on this subject:

See:

Three new function calls were added to the API library:
« DTL_READ W_IDX

¢ DTL_ RMW_W_IDX

e DTL WRITE_W_IDX

Appendix B

Two new Ethernet® communication features were added. You can now:

« send/receive communication using Allen- Bradley’s INTERCHANGE ™
software and the INTERD daemon

 use the SNMPD daemon

Chapter 6

Updated Information

For detailed information on this subject:

See:

All of the COMM ports on the coprocessor and expander are no longer
initialized at the factory for connection to a terminal. The 9-pin serial port
COMM 0, used for configuring the coprocessor, retains the factory settings
for connection to a programming terminal. In Series A Revision E (1.30)
and later of the firmware, however, COMM1, COMM2, and COMM3 have
all of their serial-port settings prepared for raw binary data transfers.

The control coprocessor and the expander now provide solid support for
RS-485 communications. The modules now have the necessary
hardware and low-level drivers on COMM1, COMM2, and COMM3.

Chapter 7

Preface

Using This Manual

Purpose of this Manual Use this manual to help you install, configure, and operate your control
coprocessor. This manual shows you examples of screens and programs to
help you prepare your application programs.

Important: The programming-terminal screens and programs are
examples only. Your applications may be different from the examples;
therefore, the content of your screens and user programs may be different.

Referencing Other Control Table 1, Table 2, and Table 3 show the documents available with the
Coprocessor Documents control coprocessor.
Cat. No. 1771-PCB includes: PN
PCBridg_e software disks,
registration cards, and other -

software information contained in
the Software Agreement Envelope

includes

1771-6.5.104

Documentation Set D1771-L03 1771-65.106
Software
Agreement Documentation Set D1771-L03
Envelope 1771-7.1
R —
Table 1
PCBridge Documentation Set (D1771-L03)
Manual Contents Publication
Number
1771 Control Coprocessor User Manual Explains how to install, configure, and interface the control 1771-6.5.95

coprocessor to programmable controllers using the Allen-Bradley
Interface Library

0S-9 Operating System User Manual Explains the OS-9 multi-tasking operating system and its utilities 1771-6.5.102

0S-9 Internet Software Reference Manual | Provides information on the TCP/IP protocol, FTP and TELNET 1771-6.4.11
utilities, and the socket library for client/server applications

0S-9 BASIC User Manual Shows BASIC program development 1771-6.5.103

0S-9 C Language User Manual Provides information on C functions, the C compiler, and the 1771-6.5.104
source-code debugger

0S-9 Assembler/Linker User Manual Provides further information on programming in assembler and 1771-6.5.106
using the assembler language debugger

1771 Control Coprocessor Error/Status Contains a summary of error and status codes for the API library of | 1771-7.1

Code Quick Reference functions, 0S-9 operating system, compiler, assembler/linker,

BASIC, and Internet

Preface

Table 2
D1771-L01 BASIC Programming Reference (D1771-L01)
Manual Contents Publication
Number
0S-9 Operating System User Manual | Explains the 0S-9 multitasking operating system 1771-6.5.102
For the user 1771-6.5.102 pereing =¥ ang its utilities g opereing sy
who programs 1771-6.5.103
exclusively 0S-9 BASIC User Manual Shows BASIC program development 1771-6.5.103
in BASIC
Table 3
08-9 Technical Reference (D1771-L02)
Manual Contents Publication
D1771-L02 Ll
0S-9 Technical 1/0 User Manual | Provides detailed information on writing 1771-6.5.105
device drivers
0S-9 Technical Manual Describes how memory modules are structured, 1771-6.5.107

For the user who 1771-6.5.105

needs additional

information about 1771-6.5.107
the 0S-9
operating system

loaded, linked, unlinked, etc.; describes how device
drivers and device managers are structured, what
functions they use to handle attached devices; also
includes information on task scheduling,
interprocess communication, pipes, interrupt
processing, and alarms

Going Through This Manual

Finding More Information

Reporting Corrections
and Suggestions

Use the flow chart at the beginning of each chapter to determine where you
are in the process of learning about the control coprocessor. To the left of
the flow chart is a table that shows you the primary activities in the chapter
and a page number for each activity.

Contact your nearest Allen-Bradley office or distributor for more
information about your control coprocessor or other Allen-Bradley
products. For a list of publications with information about Allen-Bradley
products, see the Allen-Bradley Publication Index, publication SD499.

Use the Allen-Bradley Publication Problem Report, publication
ICCG-5.21, to submit any corrections to or suggestions for this
publication. Help us improve the quality of customer documentation.

Introducing the
Control Coprocessor

Installing the
Control Coprocessor

Getting Started with
the Control Coprocessor

Table of Contents

Chapter 1

Chapter ObjectiVesttt 1-1
Product OVerviewiiiiiiiiiinnn ... 1-1
Hardware OVerviewot 1-3
Modes of Communication with a PLC Programmable Controller . 1-4
Programming OVerviewciiiiiineennneenn.. 1-6
Chapter 2

Chapter Objectivesouuiiiinii i, 2-1
What You Need to Install Your Control Coprocessor 2-1
Selecta Power Supply ... 2-2
Prevent Electrostatic Discharge Damage 2-2
Install the Control-Coprocessor Battery 2-3
Install the Keying Bands o i, 2-5
Set Switch Configurations for the Main Module 2-6
Set Switch Configurations for the Serial Expander Module 2-6
Install the Control Coprocessorooviiiiiunnnn... 2-7
Wirethe FaultRelay o .. 2-10
Apply Power to the Control Coprocessor 2-11
Remove the Control Coprocessorcoouunn... 2-11
What to DONEXt . ..ot e 2-11
Chapter 3

Chapter ObjectiVesttt 3-1
Connect the Programming Terminal 3-1
Select the Programming Interface 3-2
Install the Software on Your Personal Computer 3-2
Access the PCBridge Software oooioan. 3-5
Configure Communication Parameters 3-6
Access and Use the OS-9 Command-Line Interface 3-7
Configure the Control Coprocessorc..cuueun.. 3-9
View Control-Coprocessor Current Status 3-19
Createa User Startup File 3-19
Send a Text File to the Control Coprocessor 3-20
Find Other OS-9 Commands 3-23

What to DONeEXt ...t 3-23

Table of Contents

Using the Programming
Environment

Developing Programs

Using the Ethernet Interface

Using the Serial Ports

vi

Chapter 4

Chapter ObjectiVesttt 4-1
Createa CTest Programco i, 4-1
Compilea CTest Program, 4-2
Send a Binary File to the Control Coprocessor 4-3
Confirm File Passage to the Control Coprocessor 4-5
Create a BASIC Test Program 4-5
Use an Example Application Program to Access the RAM Disk . 4-6
Whatto DoNext 4-8
Chapter 5

Chapter Objectivesouuiiiiii i, 5-1
What Is the Application Program Interface 5-2
When to Use API Functionst 5-2
How to Use DTL Functionsccooiiiiiinn... 5-3
How to Use BPI Functionst 5-6
How to Use Message Instructions 5-7
How to Use TAG Functionst 5-10
How to Use CC Utility Functions 5-12
Prepare Programs for Direct-Connect Mode 5-14
Prepare Programs for Standalone Mode 5-18
Chapter 6

Chapter ObjectiVesuttin et 6-1
Ethernet Communication, 6-1
Connecting Ethernet to the Network 6-2
Addresses for the Ethernet Port 6-3
Modifying the Ethernet Configuration Files 6-4
Configuring the Ethernet Port 6-12
Using the OS-9/Internet FTP Utility 6-12
Using the OS-9/Internet TELNET Utility 6-17
Using the Internet Socket Library in C Programs 6-19
Using the INTERD INTERCHANGE Daemon 6-22
Using the SNMPD Daemonc.. o i, 6-27
Chapter 7

Chapter Objectivescuuiiiiniii i, 7-1
Setting Up Communication Parameters 7-2
Referencing OS-9 Serial Port Device Names 7-4
Connecting to the Serial Port 7-4
Using a Serial Port for ASCII and Other Serial Communication .. 7-5
Using a Serial Port for RS-485 Communication 7-10
Using a Serial Port for RS-422 Communication 7-17

Interpreting Fault Codes
and Displays

Control Coprocessor
Specifications

Application Program
Interface Library of
Functions

Table of Contents

Chapter 8

Chapter ObjectiVesttt 8-1
Serial Expander Module ASCII Display 8-1
Statusfor LEDs 8-2
Appendix A

Product Specifications. A-1
Product Compatibility i A-2
Control-Coprocessor MEMOIYvvtininienneennneenn.. A-2
CSA Certificationc.ooiiiniiiiiiiiiiiniinneenn.. A-3
UL Certificationt A-3
Appendix B

Appendix Objectives B-1
What Is the Application Program Interface B-1
Using Pointers i B-2
BPI DISCRETE ... e B-3
BPI_ READ ... B-5
BPI WRITE ... o e B-8
CC_DISPLAY DEC e B-11
CC_DISPLAY EHEX i B-13
CC_DISPLAY _HEX ... o e B-15
CC_DISPLAY _STR ... e B-17
CC_ERROR ... B-19
CC_ERRSTR .. B-21
CC_EXPANDED STATUSt B-23
CC_GET_DISPLAY STR ... e B-25
CC_INIT o e e B-27
CC PLC BTR ... e B-28
CC_PLC BTW e B-31
CC_PLC _STATUS ... i e B-34
CC_PLC SYNC ... e B-36
CC_STATUS o e e B-38
DTL_C DEFINE oo B-40
DTL_CLOCK ..ttt e i e B-43
DTL DEF AVAILttt B-45
DTL_GET FLT ... e B-47
DTL_GET WORD ... e B-49
DTL GET 3BCD ...t B-51
DTL GET 4BCD ..ot e B-53
DTL INIT .o e B-55
DTL PUT FLT ..o i B-57
DTL PUT WORD ... e B-59
DTL PUT 3BCD ..ot B-61
DTL PUT 4BCD ... B-63

Vii

Table of Contents

Cable Connections

viii

DTL READ W .. e B-65
DTL READ W IDX ... i B-67
DTL RMW W e B-70
DTL RMW_W_IDX .. B-73
DTL SIZE . . B-76
DTL TYPE .. e B-78
DTL UNDEF ... i e B-80
DTL WRITE W . e B-82
DTL WRITE W IDX i B-85

MSG _CLR MASK ..o e B-88
MSG_READ HANDLERccciiiiiiiiiiiinnn... B-90
MSG_READ W HANDLER, B-9%4
MSG _SET MASK .. o B-98

MSG TST MASK ..o e B-100
MSG_WAIT . . e e B-102
MSG WRITE HANDLERttt B-105
MSG_WRITE W _ HANDLER B-109
MSG_ZERO MASK ... B-113
TAG DEF AVAIL ... B-115
TAG _DEFINE e B-116
TAG_GLOBAL _UNDEF i B-119
TAG _LINK .. B-121
TAG LOCK . .ot e B-123
TAG _READ ... B-125
TAG READ W .o e B-127
TAG _UNDEF e B-129
TAG _UNLOCK ..ot B-131
TAG WRITE ... e B-133
TAG WRITE W ... e B-135
Error Values B-137
BASIC Function Codesoviiininiii i B-141
Appendix C

Appendix ObjJectivesoveuit i C-1

Connecting to the 9-Pin COMMO (/TERM) Port C-1

Connecting to the 25-Pin COMM]1, 2,and 3 Ports C-3

Connecting to the Ethernet Port C-5

Using the PCBridge
Software

Table of Contents

Appendix D
Appendix ObjJectivesovuuit i D-1
About PCBridge Softwarecoiiiiiiiiiinaa... D-1
Configuration Optionsouuiiiiiieiinneennneenn.. D-1
Loading MemoryModule D-4
Log On Remotely to OS-9 Terminal D-4
Modify Transfer Listo, D-6
Modify Build List D-6
Using the Debugger i, D-7
Compiler Optionsoiuii it D-9
Troubleshooting PCBridge Problems D-11
PCBridge UtIlitiesouiii i D-11
binex/exbin D-12
CUAO .t D-14
fixmod D-15
Ident ..o D-17
TETEE e ettt et et et e e e e e e e e e D-19
DAIES . et ve ettt ettt e e e e e e e D-20
OSICIIIP . ettt t ettt e e e D-21
OSOUIMD oottt e D-22

Introducing the Control Coprocessor

Chapter Objectives This chapter introduces the applications and functions of the control
coprocessor. The chapter also covers the hardware components and the
programming capabilities of a control coprocessor.

Introduction

For: See page: —
Product overview 1 Installing the Control Using the Ethernet
Hardware overview 1-3 Coprocessor Interface
Modes of communication 1-4 \ \
with PLC programmable Getting Started with th))
controllers antl::l(g Coap:)cevllsor € USIng the Serial Ports
Programming overview 1-6 \ \

Using the Programming Interpreting Fault

Environment Codes and Displays

|
Developing Programs
Product Overview The control coprocessor expands the capability of a programmable-

controller system by running C, BASIC, and assembler programs that
perform tasks such as:

= manipulating and analyzing input, output, and other information
gathered from the programmable controller

= communicating with devices external to the programmable controller
system via the Etherriéor asynchronous serial communication port(s)

These user programs run asynchronously to, and independently of, the
programmable-controller control logic, but they do have access to its
memory. You can use the control-logic programs in your programmable
controller to start and stop your C, BASIC, or assembler programs.

Chapter 1

Introducing the Control Coprocessor

You can use the control coprocessor for applications such as:

» calculating complex math or application-specific algorithms using
C and/or BASIC programs

= production scheduling or historical-data logging/tracking
» high-speed search and compare of very large files or look-up tables

= protocol conversion for interfacing a programmable controller with
a variety of field devices

Control-Coprocessor Modules

The control coprocessor consists of a main module and an optional serial
expander module. Table 1.A lists catalog numbers for the control-
coprocessor main modules and the optional serial expander module.

a
g2
R
s &
Q 9O
gg
w N n
]
P
%
OO 1

comm 1 @
S | @y Table 1.A
" ﬁ Control-Coprocessor Catalog Numbers®
0 :o
Control-Coprocessor Module Selection Catalog Number
(o3
o3 : Main module—256 Kbytes 1771-DMC
e C||Se
g |lae o llse Main module—1 Mbyte with Ethernet 1771-DMCA1
M||se Mles
" :E 2llee Main module—4 Mbyte with Ethernet 1771-DMC4
§§ ? Serial expander module 1771-DXPS
© See Appendix A, Table A.3 for more detailed information on memory usage.
¢ |38 . .
bllee The control-coprocessor main module is a 1-slot module. If you use both
5 i the control-coprocessor main module and a serial expander module, you
£ / require 2 slots. The figure at the left shows a 2-slot module with a
E —— 1771-DMC1 or -DMC4 main module and a serial expander module.
N F = (o
E Af§:7 o}
Il ?L&% The control coprocessor is a member of the 1771 Universal I/0O System.
SUOOUE" | bR You can use it with or without a programmable controller.

19396

Hardware Overview

RESET ()
@)
como (O)
com 1 (O)

o =zoa
00007

§

)

= ZZToo
©0000000OCOCS
000000000000

K

H—qmzzrﬂ::—urn

=]

OPRO MAIN
MODULE

19397

Chapter 1

Introducing the Control Coprocessor

Table 1.B describes the hardware elements for the main module.
Table 1.B
Main-Module Hardware Elements
Hardware Description
Element
) Use the reset switch to reinitialize the control coprocessor
RESET Switch \ o) o
When the serial expander module is installed, use the keyswitch to reinitialize the coprocessor
LEDs Four status indicators provide information on the CPU, COMMO port, COMM1 port, and battery
This is a 9-pin, optically isolated, serial communication port that supports communication
defined by EIA RS-232C standards
COMMO Port Use this port to connect:
« personal computers
* terminals

« other peripheral devices

COMM1 Port

This is a 25-pin, optically isolated, serial communication port that supports communication
defined by EIA RS-232C, -423, and -485 standards

You can also use this port with most RS-422A equipment as long as:

« termination resistors are not used

« the distance and transmission rate are reduced to 200 ft at 19.2 kbps

Use this communication port to connect peripheral devices such as:
* personal computers

« terminals

* bar-code readers

* weigh scales

* printers

Battery

This battery provides backup power for control coprocessor memory during power failure or
normal down time

Use the 3.0 volt lithium battery (cat. no. 1770-XYC) that is provided with your coprocessor

Ethernet Port
(1771-DMC1 and
1771-DMC4 only)

The 1771-DMC1 and 1771-DMC4 versions of the control coprocessor include an Ethernet
communication port that connects to thick-wire, thin-wire, or twisted-pair networks via a standard
15-pin transceiver connection

These modules use TCP/IP protocol and have resident FTP and TELNET utilities

You can program client/server applications for an Ethernet port using the TCP/IP socket library;
an Internet socket library is supplied with the PCBridge software

A downloadable driver is also available—as a part of the PCBridge software—that provides
INTERCHANGE server functionality; when the coprocessor is attached to a standard PLC-5
processor, this provides Ethernet connectivity

Optional RAM

You can install additional RAM in the main module to expand user memory
The following single inline memory modules (SIMMs) are available:

Memory Size Catalog Number
256 Kbytes 1771-DRS

1 Mbyte 1771-DRSH

4 Mbytes 1771-DRS4

1-3

Chapter 1

Introducing the Control Coprocessor

Table 1.C describes the hardware elements for the optional serial
expander module.

Table 1.C
Serial Expander Module Hardware Elements

Hardware Description
Element

This is a 2-position, spring-loaded keyswitch

Keyswitch o o) ,
The RESET position is used to reinitialize the control coprocessor without cycling power

. The 4-character alphanumeric display shows information on the state of the control
ASCII Display .
oz) coprocessor, as provided by user programs
coms () LEDs The two status indicators provide information on the COMM2 and COMMS3 ports

o =Z=oo
e0cceccecvoe
eevoeccscccse

K

These are 25-pin, optically isolated, serial communication ports that support
communication defined by EIA RS-232C, -423, and -485 standards

You can also use the port with most RS-422A equipment as long as:
« termination resistors are not used

COMM2 Port | * the distance and transmission rate are reduced to 200 ft at 19.2 kbps

9 and Use these communication ports to connect peripheral devices such as:
I COMM3 Port .

g les « terminals

Wies « personal computers

3 ||%

* bar-code readers
* weigh scales
e printers

BFANDER
19397

S0rn0 Fault Relay

The relay contact switches on a detected main-module hardware fault; the relay will
handle 500 mA at 30 Vac/dc (resistive)

Modes of Communication
with a PLC Programmable
Controller

f% A

E==E=(c)
= 7| 0Gdo
@E—%@@oooo

—I—18©

Ede]
[

l = ﬁ:ri
A control coprocessor and serial
expander in direct-connect
communication with a PLC-5
programmable controller 19398

The control coprocessor communicates with a programmable controller
through a direct connection to the programmable controller—direct-
connect mode—or via the 1771 1/0O chassis backplane—standalone mode.

When you use the serial expander module in either mode, place it
immediately adjacent to the main module under the same locking tab.

Direct-Connect Mode

In direct-connect mode, either the control coprocessor or the BLC-5
programmable controller initiates communications. The control
coprocessor can read from and write to the PLC-5 programmable
controller data table asynchronously to the ladder-program scan.

You can directly connect the control coprocessor to a PLC-5
programmable controller that has the coprocessor expansion port—
e.g., a PLC-5/11, PLC-5/20", PLC-5/20E", PLC-5/30", PLC-5/40"
(series B, revision B or later), PLC-5/4UEPLC-5/40L™, PLC-5/60"
(series B, revision B or later), PLC-5/60L. PLC-5/80", and
PLC-5/80E" programmable controller.

Chapter 1

Introducing the Control Coprocessor

The control coprocessor PLC5 Control coprocessor
v . - . Control Coprocessor
can |n|t|a.le d.lrect'access Programmable can read/wnte PLC-5 p
communication to PLC'5 Contro”er data-table and status-
user memory as shown here. file information
You do not need to program User M (Ij;_”(;-ésilr?taer(f:ag? Brc;\ust:rées
your PLC-5 programmable ser Miemory rogram
controller to support these | e
calls. N
A PLC-5 control-logic PLC-5 . Control Coprocessor
program can initiat% direct- Programmable PLC-S controblogic
access communication to Controller prograrm (MSG) initiates Interf tines in C
A Ax communication nterface routines in C or
the control processor as Control-logic BASIC program accept,
shown here. program using interpret, and respond to
MSG instruction PLC-5 programmable
\\ controller

A PLC-5 control-logic
program can initiate back-
plane communication with
the control processor in direct-
connect mode via:

discrete I/O read/write
block-transfer read/write

Important: If a fault occurs in a control coprocessor that is connected to
certain PLC-5 programmable controllers via the side connector, the
programmable controller may be unable to clear the major fault word
without first resetting the control coprocessor. In extreme cases, you may
need to separate the control coprocessor from the programmable controller.
The programmable controllers on which this may be necessary are:

= PLC-5/60 (series B revision B)
= PLC-5/40 (series B revision B)
= PLC-5/30 (series A revision B)
= PLC-5/20 (series A revision A)
= PLC-5/11 (series A revision A)

Standalone Mode
We recommend that you
use 1-slot addressing for

In standalone mode, you do not connect the control coprocessor directly to
standalone mode.

the PLC programmable controller. The control coprocessor can reside in
the same chassis as the programmable controller or in a remote chassis.

Only the programmable Programmable controller
antr'oIIer !nitiates commu- Programmable Controller | control-logic program Control Coprocessor
nication with a standalone initiates communication
control coprocessor. using discrete- and/or
S Control-logic program | block-transfer read and L
Communication is via the back- ina di ? tp gd/ ;| write instructions Interface rouines in C or
inq discrete- . bt Elely BASIC program accept,
plane using discrete- or block block-ransfer !
transfer read/write instructions. instructions interpret, and respond to
- \\ programmable controller

1-5

Chapter 1

Introducing the Control Coprocessor

(S] 1 & 2
B = 7=
g Block- 8 o g 3
° : 1 ¢ PLC-5, PLC-5/250™ Remote | | © g
-Fl-l?:(is/f\%rite s w m PLC-3®, or PLC-2® /0 Link 08
- H H ‘ programmable controller H H
1 i i -
] i = m
L 5 ‘ S = » =5

Communicates, from a remote chassis, with the programmable

with a PLC-5 or mini PLC-2® program-
prog controller via an I/0 adapter module (1771-ASB) 19400

Communicates, in the same chassis, :
mable controller via the backplane 1

Programming Overview This section provides an overview of the programming interface and
capabilities of the control coprocessor.

unintentionally write to memory outside their own data space
can corrupt memory for other applications or corrupt system
memory. We strongly recommend that development be done in
an offline or non-critical context.

c ATTENTION: Control-coprocessor programs that

User Interface

You can develop programs and communicate with the control coprocessor
using a DOS-based computer or an ASCII terminal. See Table 1.D.

Table 1.D
Programming Terminals

With this device: You can:

DOS-based initialize and configure the control coprocessor
computer * initialize and configure the Ethernet port

« develop C, BASIC, and assembler programs

« perform program debugging

« initiate and terminate tasks using the 0S-9 operating system command-
line interface

ASCII terminal « develop BASIC programs
« perform program debugging

* initiate and terminate tasks using the OS-9 operating system command-
line interface

Chapter 1

Introducing the Control Coprocessor

Program-Development Software

The PCBridge software package (1771-PCB) operates on a DOS- based
— ~
v v personal computer. This software package supports offline and online
user activities.

Use this software to:

= download/upload files and executable modules—or files and modules—
to/from the control coprocessor

= develop and edit source files

= compile, assemble, and link multiple source files written in C
or assembler

= emulate an ASCII terminal, which allows your personal computer to act
as a console device to the control coprocessor

= use various online programs, such as basic (BASIC language
[| environment) and SrcDbg (source-level debugger for C programs)

= access configuration (offline options) and other miscellaneous utilities

[| = initialize and configure the Ethernet port

Control-Coprocessor Operating System

The control-coprocessor operating system is Microware [©S-9
This real-time, multitasking operating system offers:

= command-line interface

= semaphore utilities

= inter-task communication facilities

= run-time task creation and deletion facilities
= task-prioritization facilities

= task-scheduling utilities

= unified I/O and file system for access to RAM disk and
communication ports

See the OS-9 Operating System User Manual, publication 1771-6.5.102,
for more information.

Chapter 1

Introducing the Control Coprocessor

1-8

Programming Languages

You develop C, BASIC, and assembler programs using the PCBridge
software. You can also develop and edit BASIC programs on the
control coprocessor using a terminal or a personal computer for
terminal emulation.

See the 0S-9 C Language User Manual, publication 1771-6.5.104; the
0S-9 Assembler User Manual, publication 1771-6.5.106; and the OS-9
BASIC User Manualpublication 1771-6.5.103, for more information on
these languages.

Installing the Control Coprocessor

Chapter Ob]ectives This chapter provides instructions on how to install your
control-coprocessor main module and serial expander module.

For information on: See page:
What you need to install 2-1 I
your control coprocessor \
Selecting a power supply 2.0 Installing the Control Using the Ethernet
Coprocessor Interface
Preventing ESD damage 2-2 ‘ ‘
Installing the batter 2-3 i i
. Y ‘ y Getting Started with the Using the Serial Ports
Installing the keying bands 25 Control Coprocessor
Setting switch 2-6 | |
configurations Using the Programming Interpreting Fault
Enui ;
installing the contro 7 nvironment Codes and Displays
COprocessor \
Applying power to the 21 Developing Programs
control coprocessor
Removing the control 2-11
coprocessor
What You Need to Install You need the following items for installation:
Your Control Coprocessor = control coprocessor

= serial expander module (optional)

= connector header (when using direct-connect mode)

= four connecting screws and spacers (when using direct-connect mode)
= lithium battery, battery cover, and mounting screw

= ESD grounding wrist strap

= chassis keying bands

= power supply

= chassis (properly grounded)

Chapter 2

Installing the Control Coprocessor

Select a Power Supply

o J
1771-P7

Add current for:

1. 1/0 modules

2. PLC or adapter module +

3. Main module +

4. Ethernet (*) +

5. Expander module (*) +
6. Total current required =
(*) See the associated step for how to

determine if a value or what value
should be added.

Prevent Electrostatic
Discharge Damage

2-2

Before you install your control coprocessor, select an appropriate

power supply. See the Control, Communication and Information Product
Catalog, publication ICCG-1.1, for backplane current requirements.

To determine the size of power supply that you require:

1. Record the total current draw for all I/O modules in the chassis.

2. Record the current draw for the programmable controller or adapter
module in the chassis.

3. Record 2.50 Amps for each control-coprocessor main module in
the chassis.

4. When you have a main module with Ethernet (1771-DMC1 or
1771-DMC4), record 3 times the current draw for your transceiver.
If your transceiver requires 300 mA, for example, record 900 mA (or
.90 Amps) as the result of:

300 mA X3

5. When you use a serial expander module, record 1.50 Amps for each
module in the chassis.

6. Total the values recorded in steps 1 through 5.

7. Select a power supply dependent on the input voltage required and
total current requirements recorded in step 6.

8. Select a cable for the power supply.

Important: You cannot use an external power supply and a slot-based
power supply to power the same chassis—they are not compatible.

The control coprocessor is shipped in a static-shielded container to guard
against electrostatic electrostatic discharge (ESD). ESD can damage
integrated circuits or semiconductors in the module if you touch backplane
connector pins. ESD can also damage the module when you set
configuration plugs or switches or add a SIMM (RAM memory). Avoid
electrostatic damage by observing the following precautions:

= Remain in contact with an approved ground point while handling the
module (by wearing a properly grounded wrist strap).

= Do not touch the backplane connector or connector pins.

= When not in use, keep the module in its static-shielded container.

Install the Control-
Coprocessor Battery

1. Remove the battery 2. Remove the battery cover.
from the shipping bag.

Chapter 2

Installing the Control Coprocessor

The 1770-XYC battery ships with the control coprocessor and requires
special handling. See Allen-Bradley Guidelines for Lithium Battery
Handling and Disposal, publication AG-5.4.

A red BATT status LED on the main module indicates that the battery
needs replacement. Replace the battery while the module is powered so
that your programs are maintained in memory. You may lose your
programs if you remove the battery when power is removed.

ATTENTION: To maintain CSA certification for hazardous
areas, do not substitute any other battery for the 1770-XYC.

Installing the Control-Coprocessor Battery

You can install the battery either before or after you install the control
coprocessor in the I/O chassis. To install the battery in the main module:

g?'
%\@

7=

\

S

19401

3. Remove any existing battery by pressing the lever on the battery-side connector and
sliding the connectors apart.

4. Connect the battery. BN

19403

2-3

Chapter 2

Installing the Control Coprocessor

2-4

5.

6.

7.

Place the battery and the wires in the main module.

Install the battery cover.

Using an erasable marker, record
the battery-installation date.

19404

19405

Disposing of the Battery

Refer to the Allen-Bradley Guidelines for Lithium Battery Handling and
Disposal, publication AG-5.4.

Do not dispose of lithium batteries in a general trash collection when their
combined weight is greater than or equal to 1/2 gram. A single 1770-XYC
battery contains .65 grams of lithium. Check your state and local
regulations that deal with the disposal of lithium batteries. Follow these
guidelines when you dispose of a control-coprocessor battery:

Q ATTENTION: Follow these precautions:

Do not incinerate or expose the battery to high temperatures.
Do not solder the battery or leads; the battery could explode.

Do not open, puncture, or crush the battery. It could explode; and
toxic, corrosive, and flammable chemicals could be exposed.

Do not charge the battery. An explosion might result, or the cell might
overheat and cause burns.

Do not short positive or negative terminals together. The battery will
heat up.

Install the Keying Bands

I/O Chassis
Backplane
C Connector

Keying Bands — "

(1771-RK)

]

BREBBRNRNBRHROE LN

You receive plastic keying bands with each 1/0 chassis. Insert the keying
bands in the backplane sockets of the I/O chassis, using the numbers beside

Chapter 2

Installing the Control Coprocessor

the backplane connector as a guide. See Figure 2.1 and Figure 2.2.

Figure 2.1

Keying Band Positions for the Main Module

I/0O Chassis
Backplane
C Connector

Keying Bands
(1771-RK)

Figure 2.2

/

Place keying bands
between pins:
= 24and 26
= 30and 32

BREEBERRNBEHRE L™

6X Top Backplane Connector

Keying Band Positions for the Serial Expander Module

Place keying bands
between pins:
= 16and 18

CX Top Backplane Connector
The serial expander module uses a total of three keying bands, two on the bottom connector and one on the top connector.

AND

Keying Bands
(1771-RK)

1/0 Chassis
Backplane
D Connector

Bottom Backplane

Connector
5 Place keying bands
1 between pins:
16
B = 2and4
z = 16and 18

12369-1

Chapter 2

Installing the Control Coprocessor

Set Switch Configurations The COMMO port has no switches to configure.

for the Main Module Set the COMML1 switches to configure the 25-pin asynchronous
communication port.

For this Set Switch
communication: 1 2 3 4 5 6 7
RS-232C ON ON ON OFF | OFF ON ON
RS-422 OFF | OFF ON OFF | OFF | OFF | OFF
RS-423 ON ON ON OFF | OFF ON OFF ~ CDOOOOOOOOOO&@@W%\
RS-485 ON ON ON | OFF | ON ON ON <= e
Bottom View
BO = OFF (open)
| %1 = ON (closed)
19406
Set Switch Configurations Set COMM2 and COMMS switches to configure the 25-pin asynchronous
for the Serial Expander communication ports.
Module
For this Set Switch
communication: 1 2 3 4 5 6 7
RS-232C ON ON ON OFF | OFF ON ON
RS-422 OFF | OFF ON OFF | OFF | OFF | OFF GRGNeNeNe
RS-423 ON ON ON OFF | OFF ON OFF ‘—D ‘
S
RS-485 ON ON ON OFF ON ON ON
Bottom View
B o= OFF (open)
| = ON (closed)

19407

Install the Control
Coprocessor

Chapter 2

Installing the Control Coprocessor

Install the control coprocessor in either direct-connect or standalone mode.

If you want to: Then select: On page:

Install a control-coprocessor main module directly | Direct-Connect Installation 2-7

connected to a PLC-5 programmable controller

Install the optional serial expander module Serial Expander 29

Module Installation

Install a control coprocessor in the same chassis | Standalone Installation 2-10

as, or remotely located from, a programmable
controller but not directly connected

Direct-Connect Installation

For direct-connect installation, connect the control coprocessor to a PLC-5
programmable controller (with expansion port) using a connector header.
Then, install the control coprocessor/PLC-5 programmable controller, as a
unit, into an 1/0O chassis.

You need the following hardware:

PLC-5 programmable controller with side connector
PLC-5 connector header (1785-CNH/A)

four screws

four spacers

ESD grounding wrist strap

phillips screwdriver

Chapter 2

Installing the Control Coprocessor

Connect Control Coprocessor to Programmable Controller
To connect the control coprocessor to the PLC-5 programmable controller:

connector header into the PLC-5 programmable-controller side
connector. Also, avoid bending pins when installing the control
coprocessor onto the connector header.

Q ATTENTION: Avoid bending pins when installing the

1. Place the PLC-5 programmable controller on a flat, anti-static surface with the side connector face up.

2. Hold the connector header at the grip 3. Install the connector header into
ridge with pins down. the programmable controller.

Shroud

19409
Important: It is important to attach the shroud and the pin

side of the connector header in the designated device. ~_ 19410
However, the shroud side and the pin side are not keyed. Q Programmable controller

Screw

4. Place four nylon spacers over the FRONT—Control 5
\ (4 places)

programmable controller screw holes, oprocessor '
adhesive side down. T
P
5. Install the control coprocessor onto the
shroud side of the connector header.

- Spacer

C
6. Install four screws, adjust the module ! K (4 places)

alignment, and then tighten.

FRONT—PLC-5
Programmable

Connector Header
Controller

(Shroud Side)

19411

2-8

Chapter 2

Installing the Control Coprocessor

@‘&u nﬁ‘@ Install the Direct-Connect Control Coprocessor

—h To install the PLC-5 programmable controller and control coprocessor in
s the 1771 1/O chassis:

yd

0 I= 8 Important: If you are using the 1771 chassis with the locking bar rather
T than the locking tabs, refer to the Universal I/O Chassis Installation Data,

publication 1771-2.210, for information on use.

1. Verify that power iSOFF to the 1771 Locking Tabs

I/O chassis.
2. Install direct-connect modules in t
I/O chassis using the left-most slo) Control
iM% Coprocessor
3. Slide until the modules fit into the T 9
backplane connectors. ©s é
4. Close the locking tabs. ‘ — | ﬂ

19412

LT (G 2 PLC-5 Programmable Controller

Serial Expander Module Installation

Install the serial expander module in the 1771 1/O chassis as follows.

1. Verify that power iSOFF to the 1771 Locking Tabs

I/0O chassis.

2. Slide the module into the I/O

chassis in the slot immediately b i — S
adjacent to the main module. \ 8 Card Guides i Expander
6 L’! Module

3. Slide until the module fits into
the backplane connector.

2]
4. Close the locking tab. ‘ g j%
b The serial expander module must /4 0
be in the same module group pair&\w
and under the same locking tab as L T
the main module PLC-5 Programmable Controller/
' Control Coprocessor

19413

R —

2-9

Chapter 2

Installing the Control Coprocessor

Standalone Installation

You can place the control coprocessor in any available slot in the I/O
chassis with the following limitations:

= We recommend that you configure the chassis for 1-slot addressing.

= The serial expander module, when used, must reside in the same module
pair (under the same locking tab) as the main module.

= If you have two control coprocessors, place them in different module
pairs. Two coprocessors cannot be placed under one locking tab.

= Place 1785-BCM/BEM backup communication module(s) in a different
module pair (under a different locking tab) than the control coprocessor.
You can place the 1785-BCM module in a slot adjacent to the control
coprocessor but in a different module pair.

= Place 1771 1/0O modules that require expander modules in a different
module pair (under a different locking tab) than the control coprocessor.
Examples are: 1771-IX, -QC, -QA, -OF, and -IF.

To install the control coprocessor in the 1771 1/0O chassis:
1. \Verify that power iOFF to the 1771 1/O chassis.

2. Using the card guides, insert the control coprocessor into the
designated slot of the I/O chassis.

3. Slide the module until it fits into the chassis backplane connector.
4. Close the chassis locking tab for the module.

5. Install the serial expander module using the previous section,
Serial Expander Module Installation, beginning on page 2-9.

Wire the Fault Relay On the serial expander module, wire your load to the normally open (NO)
or normally closed (NC) position, as appropriate for your application.

The fault relay is activated automatically when the main module faults or a

NG main module is not adjacent to the serial expander module. A fault

(NC) condition occurs when the control coprocessor’s firmware cannot keep a
T hardware watchdog from timing out.

(NO)
L@ The fault relay can handle a load of 500 mA at 30 Vac/dc. You can use

the fault relay for resistive loads without contact protection (to its rated
load). For capacitive, inductive, filament, or other loads that produce
surges, contact protection is recommended. Use relay manufacturer’s data
books to select contact protection devices or see the 1771 Discrete 1/0

2-10

Apply Power to the
Control Coprocessor

Remove the Control
Coprocessor

What to Do Next

Chapter 2

Installing the Control Coprocessor

Relay Contact Output Modules Product Data, publication 1771-2.181, for
more information.

The control coprocessor performs the following functions at power up:
= bootstrap routine

= OS-9 initialization

= A-B initialization (if direct-connect)

= invokes either a user start-up program or the OS-9 shell
(command interpreter)

= hardware initialization (RAM disk, OS-9 clock, serial ports)
= fault-relay energizing

You will get the following normal indications on the main module after
power up:

= CPU LED blinks green four times and then remains lit green

= BATT LED blinks red four times and then is not lit (this indicates a
properly charged battery)

You will get the following normal indication on the optional serial
expander module after power up: the four character positions on the
ASCII display blink four times and then are not lit.

When removing a main module in direct-connect or standalone mode, first
verify that power is off to the 1771 1/0 chassis; then, remove the module
by reversing the installation procedure. If in direct-connect mode, remove
the module from the PLC-5 programmable controller.

When removing a serial expander module, first verify that power is off to
the 1771 I/O chassis; then, release the locking tab and remove the module
from the 1/O chassis.

After you complete the installation and powerup of the control
coprocessor, proceed to Chapter 3. Chapter 3 instructs you on how
to connect a programming terminal to the control coprocessor and
establish communication.

2-11

Chapter Objectives

Connect the

Programming Terminal

Chapter

Getting Started with the
the Control Coprocessor

This chapter provides instructions on how to set up your control
coprocessor for communication by:

= setting up your programming terminal

= setting up configuration parameters for the interface between the
programming terminal and the control coprocessor

= testing the interface by completing the interface tasks

For information on: See page: .
Introduction
Connecting the 3-1
programming terminal |
Selecting the 3.2 Installing the Control Using the Ethernet
programming interface Coprocessor Interface
Installing 1771-PCB 3.2 | |
ft i i . .
software Getting Started with the Using the Serial Ports
Accessing the 3.5 Control Coprocessor
PCBridge software \ |
Configuring communication 3-6 Using the Programming Interpreting Fault
parameters Environment Codes and Displays
Accessing the 0S-9 37 |
command-line interface .
Developing Programs
Configuring the 39
control coprocessor
Viewing control 3-19
coprocessor current status
Creating a user startup file 3-19
Sending a text file to the 3-20
control coprocessor
Using other 3-23

0S-9 commands

You can program the control coprocessor via a personal computer or an
ASCII terminal.

Personal Computer (DOS-Based) Terminals ASCII Terminals
IBM PC/ATOI VT22000 (DEC)
Allen-Bradley T47, T50, T53, or T60 Other ASCII terminals

Chapter 3

Getting Started with the Control Coprocessor

Connect the programming terminal to the COMMO port—default
terminal port—of the main module. See Appendix C for cable and
connector information.

Figure 3.1
Personal Computer to Control Coprocessor Connection

—— Control Coprocessor (COMMO0)

=

)

T K
J L Serial [g
= Communication o g
=g 3 Link ©8 8
ﬁr =t @u 1
[I D H
T53 (Serial Port COM1) @] o] B
9 @ o
; _ 19414
Select the The programming terminal that you select determines how you program
Programming Interface the control coprocessor.
If you use: You program using: See page:
A personal computer | the PCBridge software and your text editor 3-2
An ASCII terminal 0S-9 command-line interface 37

Install the Software on Your Before you install and use the PCBridge software (1771-PCB), you must
Personal Computer have a working knowledge of DOS and its utilities, such as: DIR, COPY,
and TYPE. You must also be able to use a DOS text editor.

To install the PCBridge software and the library of functions you will use
for your programming, your personal computer must have at least:

= 640 Kbytes RAM
» 2 Mbytes online disk storage
= DOS 4.0 or later

Included with the PCBridge software is:

= a C cross-compiler, cross-assembler, and cross-linker

= a C source-code debugger

= Kermit—for sending/receiving data files and application programs
= Internet-support software

= A-B interface libraries

= atext editor

3-2

Chapter 3

Getting Started with the Control Coprocessor

See Appendix D for more information. See Chapter 5 and Appendix B for
more information on the A-B interface libraries.

To install the software:

1. Insert the first disk.

2. Atthe DOS prompt, typistall ~ dest drive : and press
[Return]
For example: if your source drive is b: and you want to install the
software on your hard drive c:, then type;
b:install C:
and presgReturn] . The software displays a screen regarding the
licensing agreement and copyright protection.

3. PresdReturn]

Figure 3.2

Registration Screen

///;;;tents: Control Coprocessor Development Software ‘\\\\\
Catalog Number: 1771-PCB/A

Part Number: 999415-A1 Quantity: 2 Disks
Release Number: 1.8

Company Name: Allen-Bradley
— Address: 747 Alpha Dr.
: Highland Heights, OH 44143
Serial Number: AABAABAA

Product Registration Information

Instructions
Press ENTER to continue with the installation

=

~/

4.

5.

Fill in your company name (up to 31 characters) and address as well
as the serial number of your software.

PresqdReturn] to save. You get the screen to install your software.

3-3

Chapter 3

Getting Started with the Control Coprocessor

Figure 3.3
Download the PCBridge Software

////;;ntents: Control Coprocessor Development Software ‘\\\\\

Catalog Number: 1771-PCB~ A
Part MHumber: 999415-81 Quantity: 2 Disks
Release Mumber: 1.8

152 Complete [N

UNPACK 251k Copied :F3 “
tivity
Unpack PCE.EXE to C:NPCBRIDGENPCB.EXE
Unpack PCE.FNC to C:NPCBRIDGENPCB.FNC
Unpack PCB.CNF to CINPCBRIDGENPCB.CNF
Unpack PCEB.SCL to C:NPCBRIDGENPCB.SCL

|iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiIii|

6. Press[Return] to begin installing the software. The percentage-

DIRECTORY STRUCTURE complete graph increments as the software is loaded.
C:\
7. Install the remaining disk(s) when the system prompts you.
- PCBRIDGE
\; EDITOR Figure 3.4

Files to Modify

| |NET /Cnntents: Control Coprocessor Development Software \

Catalog Number: 1771-PCB/A
Part Number: 999415-81 Quantity: 2 Disks
Release Number: 1.8

Status
188 Complete
OSQC 1672k Copied 8z 25% 58 75x 188
tivity

Add the following lines to your AUTOEXEC.BAT file, either manually
or by pasting them in from the AUTOEXEC.PCEB file on Disk #1:
DEFS PATH C:NOS9CNBIN;C:\PCBRIDGE...
SET CDEF=C:NOS9CNDEFS
SET CLIB=C:N\OS9CNLIB
LIB SET PCBRIDGE=C:\PCBRIDGE
SET GRPUSER=8.8

(In this example C! is the target drive)

—
—— EXAMPLES \ /

-—— BIN

Important: After you have installed the disks, the system informs you of
any files that you must modify—e.g., AUTOEXEC.BAT, PCB.CNF—to
enable the compiler to start properly.

Do not use the NOEMS flag as part of the EMM386.EXE command in
the CONFIG.SYS file. Instead, use the RAM flag, which allows the
PCBridge software and other applications to use both extended and
expanded memory.

3-4

Access the PCBridge
Software

Chapter 3

Getting Started with the Control Coprocessor

Access the PCBridge software from the DOS command line by typing
and pressingReturn] . See Figure 3.5.

Figure 3.5
PCBridge Main Menu

///;;;Pidge ver . Microware's PC-hosted 05-9/688x8 Development System \\\\\\

Welcome to PCBridge [PCBridge —- 05-9 Development Options 1
B) Build
C) Configuration Options
D) Source Debug
E) Edit
F) File Utilities
HY Help
I) Internet Utilities
J)Y Jump to DOS (EXIT returns from DOS)
L) Load Memory Module
R) Receive file from 08-9
8) Send file to 03-9
T) Modify Transfer List

U) Modify Build List
Z) Ascii file transfer
Q) Quit PCBridge

+PCBZ 1:38 -CA -PR -LO +LF -LE +X0 -CT CD COMi 19288N81 PCBridge)/////

Note that the-PCB2line at the bottom of the screen is a status line.
Among other information that it provides, it informs you of the status of
the link between the personal computer and the control coprocessor.

To select options from the main menu, use the arrow keys to cursor to a
choice on the menu and prg¢Rsturn] ; or you can simply type the letter
of your choice.

Use any of the following methods to highlight a menu item:

= usethe[+] or[] cursor keys to move the highlighting up or down
= use[Space Bar] to move the highlighting to the next item on the menu
= enter the first character of a menu item to select it

Many of the menu items, when selected, prompt you for further
information. Most screens allow you to exit and stop execution of the
option if you presgesc] before you pregReturn] . This aborts the
operation and returns you to the previous screen.

Chapter 3

Getting Started with the Control Coprocessor

Configure Communication To configure parameters for the communication interface between the

Parameters personal computer and the control coprocessor:
1. SelectC) Configuration Options on the PCBridge main menu.
You get the PCBridge Configuration Options screen. See Figure 3.6.
Figure 3.6

PCBridge Configuration Options Screen

/////;Cﬂridge ver. Microware’'s PC-hosted 05-9/688x8 Development System
Welcome to PCBridge

[PCBridge Configuration Options 1

\

A) Assembler R68 Options
B) C Compiler Options

D) Capture Session to Disk
E) Editor Name

H) Help

K) Edit Key Definitions

L) Log Session to Printer

T) Toggle Status Line

U) UVideo/Color Attributes
W) Write Configuration File
Q) Quit Configuration Options

\\\jfffz 1:31 -CA -PR -LO +LF -LE +X0 -CT CD COM1 192ABN81 PCBridge l/////

2. On the PCBridge Configuration Options menu, select
C) Communication Parameters . See Figure 3.7.
Figure 3.7

PCBridge Communication Parameters Screen

F[Communications parameters 1]

3-6

al) Serial port 1

b) Baud rate : 9688
c) Parity N (Ascii 78)
d) Data bits .8

e) Stop bits 1

f) Add line feeds to incoming CRs . No
g) Add line feeds to outgoing CRs ! No
h) Check Clear To Send : No
i) Check Data Set Ready ! No
J) Hard-wired connection . Yes
k) Break length in 1/188 seconds HY |
1) Drop DTR at end . No
m) Close serial port on jump to DOS : No
n) Do XON/XOFF flow control ¢ Yes
0) Strip high bit in terminal mode : No
p) Comm buffer input size : 4896
q) Comm buffer output size 1132
r) Local echo on : No
g) SBerial port hardware settings

t) Ascii transfer line delay T 25
Enter letter of item to revise or hit ESC to quit:

9:55 -CA -PR -LO

-LF -LE +X0 -CT CD COM1 9688NB1

PCBridge

Access and Use the 0S-9
Command-Line Interface

Chapter 3

Getting Started with the Control Coprocessor

On the PCBridge Communications Parameters screen, select the
parameters for communication with the control coprocessor. These
parameters are the default setup of the control coprocessor:

= 9600 baud
= NO parity
= 8 data bits
= 1 stop bit

See Appendix A, Control-Coprocessor Specifications, for other
available rates of communication.

Important: If you want to change the communication rate for the
personal computer via the PCBridge software, you must first change
the communication rate for the control coprocessor. See the section
on creating a user startup file—page 3-19—for more information.

Select each parameter that you want to change. You get a menu
with options available for that parameter. Select the option for
your application.

After entering all of your new parameters, prgs€] to quit the
screen and return to the configuration menu.

Selectw) Write Configuration File to save your
communication configuration.

PresdEsc] to quit the screen and return to the PCBridge
main menu.

To use the OS-9 command-line interface:

1.

PresqgReturn] on your ASCII terminal, or selet) 0S-9
Terminal and pres§Return] on the PCBridge main menu, to
access the 0S-9 command-line interface.

At the$ prompt, type any of the available OS-9 standard utilities and
built-in shell commands.

See the 0S-9 Operating System User Manual, publication 1771-6.5.102,
for more information.

Get Help for 0S-9 Utilities

At the$ prompt, type the name of the utility for which you want more
information, followed by space@ and presgReturn]. See the example

in Figure 3.8. You get information on the syntax, function, and options for
that utility.

3-7

Chapter 3

Getting Started with the Control Coprocessor

Figure 3.8
0S-9 Command-Line Interface Utility Help

ﬂBridge Microware’s PC hosted OS-9/680x0 Development System \
Welcome to PCBridge

$ deldir -?
Syntax: deldir [<opts>] {<dir> [<opts>]}
Function: delete a directory

Options:
-q delete directories without asking questions
-f delete files with no write permission
-z get list of directory names from standard input
-z=<path> get list of directory names from <path>
$

k/TlOO 16:05 -CA -PR -LO -LF -LE +XO -CT CD COM1 9600N81 PCBridge /

At the$ prompt, typendir and presfReturn] for a list of all
available utilities.

Set Time for 0S-9

At the$ prompt, typesetime and presfReturn] to set the time and
date for the control-coprocessor operating system. See Figure 3.9.

Figure 3.9
0S-9 Command-Line Interface Setime Utility

/ PCBridge Microware’s PC hosted 0S-9/680x0 Development System \
Welcome to PCBridge

$ setime
yy/mm/dd hh:mm:ss [am/pm]
Time: 92/04/30 16:06:20
April 30, 1994 Thursday 4:06:20 pm
$ date
April 30, 1994 Thrusday 4:06:23 pm
$

\{'100 16:05 -CA -PR -LO -LF -LE +XO -CT CD COM1 9600N81 PCBridge /

3-8

Configure the
Control Coprocessor

Chapter 3

Getting Started with the Control Coprocessor

Create a Test Directory

At the$ prompt, typemakdi r followed by a space and the name of the
test directory that you want to create; then, pjessurn]. Change
your working directory to the one that you just created. See Figure 3.10.

Figure 3.10
0S-9 Command-Line Interface Make Directory and Change Directory

/ PCBridge Microware’s PC hosted 0S-9/680x0 Development System \

Welcome to PCBridge

$ pd
$ makdir TEST_DIR
$ dir
Directory of . 16:07:18
TEST_DIR
$

\{100 16:05 -CA -PR -LO -LF -LE +XO -CT CD COM1 9600N81 PCBridge /

Return to the PCBridge Main Menu from the 0S-9 Command Line

PresdF1] to return to the PCBridge main menu from the OS-9 command-
line interface. From the PCBridge main menu, you can select other
PCBridge options.

You must do the following to configure the control coprocessor:

To configure: See page:
Default startup parameters (CC_CFG) 3-10
System memory (MEM_CFQ) 3-11

3-9

Chapter 3

Getting Started with the Control Coprocessor

Configure the Default Startup Parameters

Configure the default startup parameters of the control coprocessor using
the CC_CFG utility. See Figure 3.11.

Figure 3.11
Default Parameters for the Control Coprocessor

/ PCBridge Microware’s PC hosted 0S-9/680x0 Development System \
Welcome to PCBridge

$ cc_cfg -add=22 -rst=disable -tag=0

Control Coprocessor Station Address: 22 octal

PLC-5 to Control Coprocessor reset: disabled

TAGs - Size of current TAG Table: 1024
Size requested for next boot: 0

\SOO 16:05 -CA -PR -LO -LF -LE +XO -CT CD COM1 9600N81 PCBridge /

With this utility, you:

= set the control coprocessor station address

= enable/disable the capability of the PLC programmable controller to
reset the control coprocessor when the PLC programmable controller
encounters a hardware fault

= configure the size of the TAG table

Syntax for the CC_CFG utility is:

cc_cfg {<opts>}

functions: Configure Control Coprocessor Parameters

options: -add=<octl num> Station Address (0-77 octal)
-rst=<str> Enable/Disable PLCs’ reset to CC
-tag=<num> Request size of TAG table

The station address and reset parameters take effect immediately.

The selected size of the TAG table is effective after the next system boot.
If there is insufficient memory available for the configuration, 1024 is the

default size used for 1771-DMC1 and 1771-DMC4 control coprocessors.
Zero is the default TAG-table size for the 1771-DMC control coprocessor.

3-10

Chapter 3

Getting Started with the Control Coprocessor

Configure System Memory

Configure the control coprocessor system memory using the MEM_CFG
utility. You can configure the size of the following non-volatile memory
sections:

= RAM disk—page 3-12
= user memory—page 3-13
= module memory—page 3-15

See Figures 3.12 through 3.20 for an example using the MEM_CFG utility.

Figure 3.12
Memory Configuration
/ PCBridge Microware’s PC hosted OS-9/680x0 Development System \
$ MEM_CFG
Control Coprocessor Memory Configuration Utility
Original Current
Settings Settings
Non-Volatile RAM Disk = 64Kb 64Kb
Non-Volatile User Memory = 0Kb O0Kb
Non-Volatile Module Memory = 0Kb 0Kb
0S-9 Free Pool = 4800Kb 4800Kb

Configurable System Memory = 4864Kb 4864Kb
Main Menu Selection

1 = Configure Non-Volatile RAM Disk Size

2 = Configure Non-Volatile User Memory Size

3 = Configure Non-Volatile Module Memory Size
4 = Configure System (reboot)

K Select Option: /

You can allocate all of the system RAM to the non-volatile memory
sections except for 128 Kbytes that are allocated for the control
coprocessor, 0OS-9 operating system, and the free-memory pool of the
operating system. Any RAM that you do not configure as non-volatile is
allocated to the operating system'’s free-memory pool.

The non-volatile module memory (NVMM) utility controls the
non-volatile module memory. Use the NVMM utility to manage your
program modules in memory. See page 3-16.

After you make all your changes to the memory configuration, you must
select option 4 from the main menu. See page 3-18. This reboots the
system and activates your changes.

of-memory error, you can recover the default memory setup by

Q ATTENTION: If configuring the memory results in an out-
removing the battery from the coprocessor for several minutes.

3-11

Chapter 3

Getting Started with the Control Coprocessor

RAM Disk

The RAM disk is an emulated drive that resides in Random Access
Memory (RAM). You can store and access any files on a RAM disk. The
default size of the non-volatile RAM disk is 64 Kbytes.

A

ATTENTION: Changing the size of the non-volatile RAM
disk will reformat it. Back up the disk data before changing the
RAM-disk size.

3-12

To configure the non-volatile RAM disk:

1. AttheSelect Option prompt, ented for the non-volatile
RAM-disk configuration option. See Figure 3.13.

Figure 3.13

Configure the RAM Disk

PCBridge Microware’s PC hosted OS-9/680x0 Development System

4 N

Select Option: 1
Current
Settings

Original
Settings

64Kb
OKb
OKb

64Kb
OKb
OKb
4800Kb

Non-Volatile RAM Disk
Non-Volatile User Memory =

Non-Volatile Module Memory =
0S-9 Free Pool 4800Kb

4864Kb

Configurable System Memory = 4864Kb

Non-Volatile RAM Disk Size

Enter desired number of 64K (65536) byte blocks for disk (1- 76): 8

Original ~ Current

Settings Settings
Non-Volatile RAM Disk = 64Kb 512Kb
Non-Volatile User Memory = OKb O0Kb
Non-Volatile Module Memory = 0Kb 0Kb
0S-9 Free Pool = 4800Kb 4352Kb
Configurable System Memory = 4864Kb 4864Kb

/

At the prompt, enter the number of blocks—between 1 and the
maximum amount as shown by the utility—that you want to allocate
to the RAM-disk size.

o

2.

Chapter 3

Getting Started with the Control Coprocessor

Non-Volatile User Memory

This is a non-volatile area of memory that is not known to the operating
system; therefore, any data stored here remains intact through resets and
power cycles. This non-volatile memory is controlled by user programs.

This area of memory is basically a storage area for data. Although you can
use it for any purpose, one common application is to use this area as a
common memory area for multiple programs—this makes effective use of
the fact that this memory is non-volatile.

1. AttheSelect Option prompt, entee for the non-volatile
user-memory configuration option. See Figure 3.14.

Figure 3.14
Configure Non-Volatile User Memory

PCBridge Microware’s PC hosted OS-9/680x0 Development System
Select Option: 2

Original ~ Current
Settings ~ Settings

Non-Volatile RAM Disk = 64Kb 512Kb
Non-Volatile User Memory = OKb 0Kb
Non-Volatile Module Memory = 0Kb 0Kb
0S-9 Free Pool = 4800Kb 4352Kb

Configurable System Memory = 4864Kb 4864Kb

Non-Volatile User Memory Size

Enter desired number of 1K (1024) byte blocks (0 - 4352): 5

Original ~ Current
Settings Settings

Non-Volatile RAM Disk = 64Kb 512Kb
Non-Volatile User Memory = OKb 5Kb
Non-Volatile Module Memory = 0Kb 0Kb

0S-9 Free Pool = 4800Kb 4347Kb
\\ Configurable System Memory = 4864Kb 4864Kb /

2. At the prompt, enter the number of blocks that you want to allocate to
non-volatile user memory—between 0 and the maximum amount as
shown by the utility.

intended to be read-only. Subsequent memory configurations
can change the pointer value to the start of the non-volatile user
memory. User programs must contain comparisons to check
that the pointer value has not changed from the originally
stored value.

Q ATTENTION: Do not change the pointer values. They are

See the following example program—MY_MEM.C. Address 0x10000200
contains a pointer to the start of the non-volatile user memory. Address
0x10000204 contains the size of the block in bytes (an unsigned integer or
4 bytes). The control coprocessor sets the data at addresses 0x10000200
and 0x10000204, dependent on memory configuration.

3-13

Chapter 3

Getting Started with the Control Coprocessor

Non-Volatile Memory Example User Program MY_MEM.C

#include <time.h> /* include time header file */
#define PM_PTR 0x10000200 /* this is where my nv memory ptr is stored */
extern time_t time(); [* function declarations */

struct tm *localtime();
char * asctime();

typedef struct [* define my structure in nv ram */
{
unsigned *ptr_check; /* storage for checking nv pointer */
char time_stamp[26]; /* xxx mmm dd hh:mm:ss yyy\n\0 */
unsigned count; /* boot count */
IMY_MEM;
main (argc, argv)
int argc;
char *argv[];
{
MY_MEM *mm_ptr; [* ptr to my memory */
char *tim_ptr; [* string ptr for time string */
time_t cal_time; [* calendar time storage */
struct tm *loc_time; /* local time storage */
mm_ptr = *(MY_MEM **)PM_PTR,; [* get pointer to my nv data */
if (mm_ptr == 0) /* make sure its allocated */
{
printf ("Protected Memory not allocated\n”);
exit (0);
}
if (argc > 1)mm_ptr->ptr_check=(unsigned *)mm_ptr; /* store ptr on init */
else
{
if (mm_ptr = (MY_MEM *)mm_ptr->ptr_check) /* check if ptr changed */
{
printf ("Protected Memory Pointer changed\n”);
exit (0);
}
}
cal_time = time(0); [* get time */
loc_time = localtime (&cal_time); /* convert to local time */
tim_ptr = asctime (loc_time); [* convert to string */
if (argc > 1) [* if command line parameter then initialize data */
{
mm_ptr->count = 0; /* start count at 0 */
strncpy (mm_ptr->time_stamp,tim_ptr,26); [* store initial time */
printf ("\nCurrent time is ->%s\n",mm_ptr->time_stamp);
}
else
{
printf ("\nTime of last boot ->%s\n",mm_ptr->time_stamp); /* print old */
strncpy (mm_ptr->time_stamp,tim_ptr,26); [* copy new time to nv */
printf ("Time of this boot ->%s\n”,mm_ptr->time_stamp); /* print new */
mm_ptr->count +=1; /* increment boot count */
printf ("Boot count = %d\n”,mm_ptr->count); /* print boot count */
}

3-14

Chapter 3

Getting Started with the Control Coprocessor

user memory in its simplest form. The control-coprocessor
MEM_CFG function only supplies a pointer and size to the
non-volatile user memory. It is the responsibility of the user to
manage the memory appropriately.

Q ATTENTION: This program illustrates the use of non-volatile

The program stores the value of the pointer on initialization. It then
performs subsequent checks to verify that the pointer value has not
changed.

Non-Volatile Module Memory

Use this non-volatile area of memory to store program modules. Although
you can store your programs on the non-volatile RAM disk, the modules
must also be loaded to OS-9 memory to run. When you store them in the
NVMM area, the modules are in a ready-to-run state and do not use
memory on the RAM disk unnecessarily.

This non-volatile memory is non-destructively searched at boot by the
operating system for program modules. Reset or power-down conditions
will not destroy modules in this memory area.

To configure the memory area in 1 Kbyte (1 block) increments:

1. AttheSelect Option prompt, entes for the non-volatile
memory-module configuration option. Seigure 3.15.

Figure 3.15
Configure Non-Volatile Memory Modules

PCBridge Microware’s PC hosted 0S-9/680x0 Development System
Select Option: 3
Original ~ Current

Settings ~ Settings

Non-Volatile RAM Disk = 64Kb 512Kb
Non-Volatile User Memory = 0Kb 5Kb
Non-Volatile Module Memory = 0Kb OKb
0S-9 Free Pool = 4800Kb 4347Kb

Configurable System Memory = 4864Kb 4864Kb

Non-Volatile Module Memory Size

Enter desired number of 1K (1024) byte blocks (0 - 4347): 70

Original ~ Current
Settings Settings

Non-Volatile RAM Disk = 64Kb 512Kb
Non-Volatile User Memory = O0Kb 5Kb
Non-Volatile Module Memory = OKb 70Kb

0S-9 Free Pool = 4800Kb 4277Kb
Configurable System Memory = 4864Kb 4864Kb

2. At the prompt, enter the number of blocks that you want to allocate to
non-volatile memory modules—between 0 and the maximum amount
as shown by the utility.

3-15

Chapter 3

Getting Started with the Control Coprocessor

3-16

NVMM Utility
With the NVMM utility, you can:

* move modules from OS-9 to non-volatile module memory

= list all modules in the non-volatile module memory

» enable deletion of modules in the non-volatile module memory
= delete modules from the non-volatile module memory

Syntax for the NVMM uitility is:

NVMM -M [module] Moves module into
non-volatile module memory
NVMM -L Lists all modules in
non-volatile module memory
NVMM -D Enables deletion of modules in

non-volatile module memory

Important: When you move modules to the non-volatile module memory,
they are not included in the OS-9 Module Directory until the next
system boot.

Whendelete enable is set by the NVMM utility, the next system boot
automatically invokes NVMM in a menu mode. From the menu, you can
list and delete modules in the non-volatile module memory.

To protect modules that are used by other processes, you can delete the
modules from non-volatile module memory only during the next
system boot.

See Figure 3.16 through Figure 3.18 for an example session of NVMM.

Figure 3.16
NVMM Session (1 of 3)

/ PCBridge Microware’s PC hosted 0S-9/680x0 Development System \

$ NVMM -M MY_MEM

Non-Volatile Module Memory Move Utility

Module [MY_MEM] moved to Non-Volatile Module Memory
$

$ NVMM -L
Non-Volatile Module Memory List Utility
ADDRESS SIZEHEX SIZE DECIMAL MODULE NAME

101ee800 556H 1366 hello

101leed56 74cH 1868 my_mem

Total size of Non-Volatile Module Memory is 71680 (11800h) bytes
Largest contiguous Non-Volatile memory is 68446 (10b5eh) bytes
$

$ NVMM -D
Non-Volatile Module Memory Delete is enabled

Chapter 3

Getting Started with the Control Coprocessor

Figure 3.17
NVMM Session (2 of 3)

/ PCBridge Microware’s PC hosted 0S-9/680x0 Development System \

$
Non-Volatile Module Memory Menu Selection

1 = Delete module in Non-Volatile Module Memory

2 = Delete all modules in Non-Volatile Module Memory

3 = List all modules in Non-Volatile Module Memory

4 = Exit (continue boot)

Select Option: 3

Non-Volatile Module Memory List Utility

ADDRESS SIZE HEX SIZE DECIMAL MODULE NAME

101ee800 556H 1366 hello

101leed56 74cH 1868 my_mem

Total size of Non-Volatile Module Memory is 71680 (11800h) bytes
Largest contiguous Non-Volatile memory is 68446 (10b5eh) bytes

- /

Figure 3.18
NVMM Session (3 of 3)

/ PCBridge Microware’s PC hosted 0S-9/680x0 Development System \
$

NVMM Menu Selection

1 = Delete NVMM Module

2 = Delete all NVMM Modules
3 = List all NVMM Modules

4 = EXxit (continue boot)
Select Option: 1

Non-Volatile Module Memory Delete Utility
Enter module name: hello
Module [hello] deleted

NVMM Menu Selection

1 = Delete NVMM Module

2 = Delete all NVMM Modules
3 = List all NVMM Modules

4 = Exit (continue boot)
Select Option: 4

Allen-Bradley Control Coprocessor

Copyright 1994, Allen-Bradley Company, Inc.

All Rights Reserved
Series/Revision A/E (1.30)

MY_MEM displays the time of the last boot, time of this boot, and the

boot count. The boot count and time of last boot are stored in non-volatile

user memory. The startup file, STARTUP, includes theNiie MENO

invoke the program at system boot.

3-17

Chapter 3

Getting Started with the Control Coprocessor

3-18

See Figure 3.19 for an example MY_MEM boot screen. See page 3-14 for

the source file, MY_MEM.C.

Figure 3.19
MY_MEM Boot Screen

/ PCBridge Microware’s PC hosted 0S-9/680x0 Development System
$MY_MEM

$
Time of last boot ->Wed Jul 22 12:23:03 1994
Time of this boot ->Wed Jul 22 18:12:08 1994
Boot count = 3

Allen-Bradley Control Coprocessor
Copyright 1994, Allen-Bradley Company, Inc.

All Rights Reserved
Series/Revision A/E (1.30)

-

~

/

Reboot to Configure System

After you make all your memory configuration changes, select ogtion
from the main menu to reboot and invoke the changes that you made. See

Figure 3.20.

Important: You must select option 4 on the main menu to activate any
changes that you mak®ption 4 reboots the system.Use [Ctrl-C] to
abort this utility at any time and cancel any requested changes.

Figure 3.20
Configure System (Reboot)

PCBridge Microware’s PC hosted 0S-9/680x0 Development System
Main Menu Selection

1 = Configure Non-Volatile RAM Disk Size
2 = Configure Non-Volatile User Memory Size
3 = Configure Non-Volatile Module Memory Size
4 = Configure System (reboot)
Select Option: 4
Allen-Bradley Control Coprocessor
Copyright 1994, Allen-Bradley Company, Inc.
All Rights Reserved
Series/Revision A/E (1.30)
Warning: Memory configuration has changed

User Startup File "/dd/startup” bypassed

Non-Volatile RAM Disk configuration has changed

Non-Volatile User Memory configuration has changed

Non-Volatile Module Memory configuration has changed

Pointer to Non-Volatile User Memory has changed
Current pointer to Non-Volatile User Memory: 101ed400

Current size of Non-Volatile User Memory: 5k
Current size of Non-Volatile Module Memory: 70k
Current size of Non-Volatile RAM Disk: 512k

Use the NVMM -L utility to verify contents of Non-Volatile Module Memory

\

View Control-Coprocessor
Current Status

Create a User Startup File

tmode -w=0 -w=1 baud=19200
xmode /t1 baud=19200
shell <>>>/t1&

procs

Chapter 3

Getting Started with the Control Coprocessor

Use the CC_STATUS utility to view the current status of the control
coprocessor. See Figure 3.21 for an example screen.

Figure 3.21
CC_STATUS Screen

/ PCBridge Microware’s PC hosted OS-9/680x0 Development System \

$ CC_STATUS

Allen-Bradley Control Coprocessor Status

Series/Revision:
PLC-5:
Expander: .

AJE (1.30)
.. on-line
.... ot present

Station Address: .
Ethernet Address:
Total Memory:
TAG Table:
Non-Volatile Mem

RAM Disk:

Module Memory: 50k
User Memory: 3k

o /

When you power up or reset the control coprocessor, it executes the startup
file IDD/STARTUP. This file is a text file that contains one or more
command lines. The shell executes each command line in the exact order
given in the file. It is similar to a DOS AUTOEXEC.BAT file.

You can bypass the execution of the startup file by holding the control
coprocessor reset button—or the keyswitch on the serial expander
module—until the CPU LED on the main module begins to blink,
approximately 5 seconds.

In order for the startup file to execute on powerup or reset, you must have
previously executed theetime command to set the real-time clock.

Example Startup File

The following is an example of a startup file;

*change baud of /term port
*change baud of /t1 port
*activates a shell on /t1
*see what processes are currently running

You cannot set environment variables in a startup file because OS-9
invokes a separate shell to run the script file. However, you can set
environment variables when you set up a password file. See page 3-20
for more information.

See 0S-9 Operating System User Manual, publication 1771-6.5.102, for
more information on shell procedure files.

3-19

Chapter 3

Getting Started with the Control Coprocessor

Set Up a Password File

After the control coprocessor executes the startup file, it executes the login
file. This file must have the appropriate entries for the login to execute.

If the control coprocessor does not find the DD/SYS/PASSWORD file, it
executes the OS-9 shell.

Important: When using Ethernet, you must have a password file in the
/DD/SYS directory. When you are not using Ethernet, the password file
is optional.

The password file contains one or more variable-length text entries—an
entry for each user name. Thelds are separated by commas and defined
as follows:

= user name
= password

= group.user ID number

= initial process priority

= initial execution directory pathlist
= initial data directory pathlist

= initial program

The following is an example of a password file:

super,user,0.0,255,.,.,shell -p="Super:
fudja,ajduf,3.7,128,/dd,/dd,shell

Set your environment variables in a .LOGIN file. The .LOGIN file is
executed when the /DD/SYS/PASSWORD file is present on the RAM
drive and the user is forced to log in.

See 0S-9 Operating System User Manual, publication 1771-6.5.102, for
more information on password files and execution of the login procedure.

Send a Text File to the This section explains how you create a text file and then send it to the
Control Coprocessor control-coprocessor RAM disk.

Create a Test Text File

To create a text file:
1. SelectE) Edit on the PCBridge main menu to access your editor.

The default text editor is DTE, a public domain text editor provided
for your convenience.

2. Create a text file. The test file for this example is named TEST.TXT.

3. Return to the PCBridge main menu after you complete writing your
text file.

3-20

Chapter 3

Getting Started with the Control Coprocessor

Send the Text File to 0S-9
To send the TEST.TXT file to the OS-9 RAM disk:

1. SelectS) Send file to 0OS-9 on the PCBridge main menu.
See Figure 3.22.

Figure 3.22

Select Send File on Main Menu
PCBridge ver. Microware's PC-hosted 08-9/688x8 Development System ‘\\\\\
Welcome to PCBridge [PCBridge —- 08-9 Development Options 1

B) Build

C) Configuration Options
D) Source Debug

E) Edit

F) File Utilities

H) Help

I) Internet Utilities

J) Jump to DOS (EXIT returns from DOS)
L) Load Hemory HModule

0) 03-9 Terminal

R) Receive file from 05-9

[5) Send file to 05-9

T) Modify Transfer List

U) Modify Build List
Z) nscii file transfer
Q) Quit PCBridge

&’CHZ 16:59 -CA -PR -LO +LF -LE +X0 -CT CD COM1 968AN81 PCBridge /

2. Enter the name of your text file in the prompt window.
See Figure 3.23.

Figure 3.23
Enter Name of Test Text File to Send to 0S-9

/ PCBridge Microware’s PC hosted OS-9/680x0 Development System \

Welcome to PCBridge

Enter filename or Transfer TAG: test.txt

\{100 16:05 -CA -PR -LO -LF -LE +XO -CT CD COM1 9600N81 PCBridge j

3-21

Chapter 3

Getting Started with the Control Coprocessor

3. Select the file transfer type Text . See Figure 3.24.

Figure 3.24
Select File Transfer Type

K PCBridge Microware’s PC hosted OS-9/680x0 Development System \

Welcome to PCBridge

Select File Transfer Type

B) Binary
H) Help
T Text

Q) Quit file transfer

\l’loo 16:05 -CA -PR -LO -LF -LE +XO -CT CD COM1 9600N81 PCBridge /

The PCBridge software automatically invokes Kermit and downloads
the text file.

4. SelectO) 0S-9 Terminal on the PCBridge main menu.
You get the control coprocessor OS-9 command-line interface.
See Figure 3.25.

Figure 3.25
Select 0S-9 Terminal on Main Menu

/////'PCBPidge ver . Microware's PC-hosted 05-9/688xA Development System

Welcome to PCBridge [PCBridge -- 03-9 Development Options 1
B) Build

Configuration Options
Source Debug
Edit
File Utilities
Help
Internet Utilities
Jump to DOS (EXIT returns from DOS)
Load Memory Module

\

0) 03-9 Terminal

R) Receive file from 05-9

§) Send file to 08-9
Modify Transfer List
Modify Build List

Ascii file transfer
Quit PCBridge

\\\\jﬁCBZ 16:59 -CA -PR -LO +LF -LE +X0 -CT CD COM1i 96ABN81 PCBridge ‘/////

3-22

Find Other 0S-9 Commands

What to Do Next

Chapter 3

Getting Started with the Control Coprocessor

5. Atthe$ prompt, typedir and pres§Return] . Observe that
the text file was successfully transferred to the RAM disk .
See Figure 3.26.

Figure 3.26
Check Directory for Test File

/ PCBridge Microware’s PC hosted 0S-9/680x0 Development System \

Welcome to PCBridge

$ dir

Directory of . 16:07:18
test.txt
$ list test.text

VT100 16:05 -CA -PR -LO -LF -LE +XO -CT CD COM1 9600N81 PCBridge /

6. Atthe$ prompt, typdist test.txt and presgReturn] . The
contents of the file are typed to the screen. Notdithhat is the
0S-9 equivalent of the MS-DOS type command.)

See the 0OS-9 Operating System User Manual, publication 1771-6.5.102,
for information on other OS-9 commands and utilities.

Proceed to Chapter 4. In Chapter 4, you create sample BASIC and C
programs and download them to the control coprocessor. You run the
programs and see the results typed to the screen.

3-23

Chapter Objectives

Create a C Test Program

Chapter ‘

Using the Programming Environment

This chapter provides an example of creating and compiling a C program
using the PCBridge software and the DOS editor; it then shows you how to
transfer the program to the control coprocessor. The chapter also provides
an example of a BASIC program.

For information on: See page:

Introduction

Creating a C test program 4-1
Compiling a C test program 4-2)) |

Installing the Control Using the Ethernet
Sending a binary file to the 4-3 Coprocessor Interface
control coprocessor ‘ ‘
Running a C program on 45 | Getting Started with the . .
the control coprocessor Contrc?l Coprocessor Using the Serial Ports
Confirming file passage to 4-5
the control coprocessor Using the Programming Interpreting Fault
Creating a BASIC test 4-5 Environment Codes and Displays
program |
Accessing RAM disk 4-6

Developing Programs

Create a test C program using the text editor. The default text editor is
DTE, a public domain text editor provided for your convenience. Use it to
edit small files and PCBridge configuration information. For more
information on DTE, view the files DTE.MAN, DTE.DOC, and DTE.HLP
in the \PCBRIDGE\EDITOR subdirectory.

Important: You need the 1771-PCB software—installed in Chapter 3—to
create C and assembler programs for the control coprocessor.

1. If you do not want to use DTE, selé&jt Editor Nameon the
PCBridge Configuration Options menu and change the text editor.

Important: The text editor you select must run in 250 Kbytes or
less of memory, depending on your system configuration.

2. SelectE) Edit on the PCBridge main menu to get the text editor.

3. Using your text editor, create the following C test program.
See Figure 4.1.

4-1

Chapter 4

Using the Programming Environment

Compile a C Test Program

4-2

Figure 4.1
C Test Program

///::;;** hello.c ::: everyone's first 'C° program! AR \\\\\\

This program is used as a first example so you can learn
the mechanics of compiling a 'C’ program using the PCBridge
C Cross-Compiler, downloading it to the Control
Coprocessor, and executing it.

"The longest journey begins with but a single step"

LRI B B B B A)

*
hs

fhinclude <stdio.h> /% needed for ‘printf()’ to work! =/

main ()
{
printf ('"Hello, worldt\n')

Ln.1 of 18

\\\\ijFOPRO\EXHHPLES\HELLO.C

This example creates a test file named HELLO.C.

>/

4. Use the exit function on your text editor to return to the PCBridge
main menu.

To compile the C test program:
1. SelectB) Build on the PCBridge main menu.

2. Enter the name of the test file and prigssgurn] . See Figure 4.2.

Figure 4.2
Enter Name of Test File for Compiling

ﬂ]Bridge ver . Microware’s PC-hosted 08-9-/688xA Development System X

Welcome to PCBridge

\TZ 1:33 -CA -PR -LO +LF -LE +X0 -CT CD COM1 19288N81 FPCBridge /

Send a Binary File to the
Control Coprocessor

Chapter 4

Using the Programming Environment

The C cross-compiler function compiles the test file. See Figure 4.3.

Figure 4.3
Cross Compiling C Test File

@ N

05-9 Cross C Compiler

"hello.c’

Press an y key to continue . . .

o /

See the OS-9 C Language User Manual, publication 1771-6.5.104,
and Appendix D for more information on setting compiler options.

3. Use the exit function on your text editor to return to the PCBridge
main menu.

The result of the build function is a binary, executable file of the program
named HELLO.

To send the binary file to the control coprocessor:

1. Selects) Send file to OS-9 on the PCBridge main menu.

2. Enter the name of the compiled file, and pi&ssurn]

Figure 4.4
Enter Name of Test File to Send to Control Coprocessor

KPCBridge ver. Microware’s PC-hosted 08-9/688x8 Development System \

Welcome to PCBridge

Enter filename or Transfer TAG: hello

\\+PCBZ 1:34 -CA -PR -LO +LF -LE +X0 -CT CD COM1 19Z88NB1 PCBridge /

4-3

Chapter 4

Using the Programming Environment

In OS-9, you type the full file name to execute the command. In our
example, the full file name is HELLO. The executable file for OS-9
does not have an extension—as compared to an executable DOS file,
which has a .COM, .EXE, or .BAT extension.

3. SelectB) Binary on the Select File Transfer Type screen.
See Figure 4.5.

Figure 4.5
Select File Transfer Type

PCBridge ver. Microware’s PC-hosted 0S5-9-688xA Development System ‘\\\\\

Welcome to PCBridge

[Select File Transfer Type 1
H) Help

T) Text

Q) Quit file transfer

\\\ifféz 1:35 -CA -PR -LO +LF -LE +X0 -CT CD COMi 19Z8@8N81 PCBridge ‘/////

The C test file is sent to the control coprocessor via Kermit. You see the
screen illustrated in Figure 4.6 being updated while the file is transferred.

Figure 4.6
Kermit Send File

PCBridge wer. Microware's PC-hosted 03-9/688x8 Development System ‘\\\\\

Welcome to PCBridge
kattr -e hello

Super: k Packets sent . |
Bytes sent 5
Retries
Bytes to send]
Current block window :
8th bit quoting
Block check type : 1 character checksum

Compression : ON using <72
Sliding windows 8

Long blocks : OFF

Last status message : Sending HELLO

“F=abort file “B=abort batch “K=abort Kermit “R=retry

\\:ff?z 1:35 -CA -PR -LO +LF -LE +X0 -CT CD COM1 192ZB8N81 PCBridge ‘/////

Refer to Appendix D, Using PCBridge, for information on loading
memory modules.

4-4

Confirm File Passage to the
Control Coprocessor

Create a BASIC
Test Program

Chapter 4

Using the Programming Environment

To confirm that the C file is resident in the control coprocessor:

1. SelectO) 0S-9 Terminal on the PCBridge main menu. You get the
control-coprocessor OS-9 command-line interface.

The C file that you previously sent to the control coprocessor should
reside in the directory that you last accessed on OS-9.

2. Atthe$ prompt, typedir and presfReturn] to verify that the C
test file was successfully transferred to the control coprocessor.

Figure 4.7
C Test File on 0S-9

'y N

k
attr -e hello
————— ewr hello

g rd
/dd/EXAMPLE
$
5 dir
Directory of . 1B:32:16
hello

S hello
Hello, world!

§
uT14e 18:31 -CA -PR -LO -LF -LE +X0 -CT CD COM1 968BN81 PCBridge

3. Atthe$ prompt, type the name of your executable fileele —and
presgReturn] . The program executes and prints Hiadio,
world! message.

This section provides a BASIC example program. You can develop and
run your BASIC program with either:

= a personal computer with PCBridge software—develop and run your
BASIC example program; download it to the control coprocessor via the
PCBridge send-ASCll-file function

= an ASCII terminal—use OS-9 to develop and run your BASIC example
program

See the 0OS-9 Operating System User Manual, publication 1771-6.5.102,
and the OS-9 BASIC User Manual, publication 1771-6.5.103, for more
information on creating and running BASIC programs.

4-5

Chapter 4

Using the Programming Environment

The following example program—HELLO.BAS—is the BASIC version of
the C example program.

rem hello.bas

rem
rem

rem This program is used as an example so you can learn the mechanics
rem of writing a Basic program using the control coprocessor.

rem

rem

* *

rem Declare some variables to be used later in the program.
DIM total, x, y: INTEGER

rem Send the ASCII control code “[2J" to clear the screen.
PRINT CHR$(27); “[2J”

rem Print a text string to the screen.

PRINT “Hello, world!”

PRINT
PRINT

rem Now try some math with the variables declared at the beginning.

X=2
y=5

total = x +vy

PRINT “The results of our math test (x + y) is ”; total

PRINT

Use an Example Application
Program to Access the
RAM Disk

4-6

This section shows a C program called CAT.C. It reads files from the
RAM disk and displays them to the screen; it is a simplified version of the
UNIX utility— cat —which concatenates files to standard output.

Figure 4.8 shows the output from the program CAT.C. The text displayed
is the concatenation of two files—HOSTS and HOSTS.EQUIV.

Figure 4.8
Access RAM Disk and Read File to Screen

\

$§ cat hosts

Same Network

#

The internet number can be generally anything except B or 255.
If your are connecting to the DARPA internet, you already know
what network numbers should be used.

#

127.8.8.1 loopback

192.52.109.48 me

138.151.132.188 pc_mike

138.151.132.188 copro_12

192 .52.189.1 alpha

192 .52.189.2 beta

192 .52.189.3 gamma

192 .52.189.4 delta
192.52.189.32 MCYrWare
138.131.132.133 group_8
138.131.132.134 group_1 localhost
13A.131.132.135 group_.
138.131.132.136 group_3

+5
\\UTiBB 1:48 -CA -PR -LO +LF -LE +X0 -CT CD COM1 19288N81 PCBridge /

Chapter 4

Using the Programming Environment

Example Program to Access RAM Disk

Refer to the following C program (CAT.C) as an example of accessing
the control-coprocessor RAM disk. Note the use of standard C library
functions—e.g.fopen() ,getc() , andfclose() —to access RAM-
disk files.

You create the file, compile it, and send it to OS-9 as a binary file.
Then, you run the C program on OS-9.

[¥**x cat.c i copy from files to standard out *****

*

* This program is used as an example so you can learn to use the
* Standard Library functions for processing characters from an

* input file and writing characters on the standard output,

* and so you can use a command in a “pipeline” with redirection

* modifiers ('<’ and '>"). Try doing a:

* cat filel file2 file3 > outfile
* type of operation to see how “cat” can merge files...

* “What goes around, comes around.”

*/

[* First, includes and defines... */

#include <stdio.h> /* needed for 'getc()’ and 'putchar()’ */
#include <errno.h> /* needed for 'errno’ to work */
/* then the function and parameter declarations... */

main (argc, argv)

int argc;

char **argv;

/* then the body of executable function statements... */

{
/* private variable declarations */
FILE *infil; /*file to copy to standard output */
int ¢, [* character (or EOF) gotten from input file ~ */

i; [* which command line argument is being processed */
/*
* This command has no option switches. It simply copies the
* input file(s) character by character to standard output.
* |If only the command itself is specified, it does nothing.
* Probably better tell the user such...!

*/

if (argc==1) /* no file names on command line */

{
fprintf (stderr, “No files on command line. Exiting.\n");
exit (0);

}

4-7

Chapter 4

Using the Programming Environment

/*
* Now, as long as we have files on the command line to process,
* open them, read them, and output them to standard output.
*/
for (i=1; i<argc; i++)
{
/*
* Remember, fopen() returns a file pointer. If the file
* pointer returned points to NULL, the file couldn’t be
* opened. Exit and tell the user why.
*/
infil = fopen (argv[il, “r");
if (infil == NULL)
{
fprintf (stderr,
“*** cat: unable to open %s. Aborting\n”,
argv(i]);
exit (errno);
}
/*
* Now loop to get all the characters in the input file and
* put them on the output file [“stdout” for “putchar()”].
*/
while ((¢ =getc (infil)) != EOF)
putchar (c);
/*
* Done with this file. Close it and get the next one...
*/
fclose (infil);
}
/*
* Done with all the command line arguments, so done with this
* program!
*/
exit (0);
}

What to Do Next When you are familiar with the programming environment, proceed to any
of the chapters listed below.

If you want to: Go to:

Learn to use the Application Program Interface (API) library of routines; Chapter 5
you can link these routines to your C and BASIC programs for
communication with a programmable controller

Establish Ethernet communication; see examples of using the Internet Chapter 6
Socket Library in C programs
Establish serial port communication Chapter 7

4-8

Chapter Objectives

Chapter

Developing Programs

This chapter describes the library of commands and executable functions
available with the control coprocessor. You will also learn when and
how to use them for communication with a programmable controller.

For information on: See page:

Introduction
What is the API 5-2 —
When to use API functions 5-2 .)
Installing the Control Using the Ethernet
Using DTL functions 5-3 Coprocessor Interface
Using BPI functions 56 \ \
Using Message instructions 5-7 Getting Started with the Using the Serial Ports
Control Coprocessor
Using TAG functions 5-10 | |
Using CC utility functions 512 Using the Programming Interpreting Fault
Preparing programs for 5-14 Environment Codes and Displays
direct-connect mode \
Preparing programs for 518 Developing Programs
standalone mode !

unintentionally write to memory outside their own data

space can corrupt memory for other applications or corrupt
system memory. This may cause unpredictable control-
coprocessor operation, including module reset. In a multi-user
environment, a reset naturally affects other users. We strongly
recommend that multi-user development be done in an offline
or non-critical context.

Q ATTENTION: Control-coprocessor programs that

5-1

Chapter 5

Developing Programs

What Is the Application The Application Program Interface (API) is a set of library routines used to
Program Interface? interface your programs with the control coprocessor. The following are
the categories of functions available in the API library.

Table 5.A
API Library Routines
API Function Definition of Set

DTL Data-table library (DTL) commands that access the data-table memory of a
programmable controller that is directly connected (direct-connect mode) to the
control coprocessor

BPI Control-coprocessor commands accessing the data-table memory of a
programmable controller through the backplane interface (BPI)

MSG Control-coprocessor message (MSG) commands that handle unsolicited
Message Instructions from a programmable controller ladder-logic program
(direct-connect mode)

TAG Control-coprocessor commands (TAG) that provide access to the control-
coprocessor memory for external devices that are connected via the serial
interface(s); ControlView® is an example of such a device that would require
access to control-coprocessor memory; TAG also provides access to
control-coprocessor memory between 0S-9 program modules

cC Control-coprocessor utility commands that handle functions such as trap
initialization, error handling, ASCII displays, etc.
When to Use APl Functions Use Table 5.B to determine which API functions to use for your

specific application.

Table 5.B
When to Use API Functions

For this application: Use this set of
API functions;

Access the data table of a PLC-5 programmable controller that is directly DTL_
connected to the control coprocessor

Accomplish discrete or block transfer of data with a programmable controller BPI_
(either direct-connect or standalone mode)

Respond to an unsolicited programmable-controller message MSG_

Provide access to control-coprocessor memory for interaction among routines | TAG_
running on the control coprocessor and to external devices connected via the
serial port(s)

Provide access to control-coprocessor memory for devices attached to the TAG_
serial ports

Handle errors generated by API functions CC_
Initialize the control coprocessor (accomplish first and once only in CC_

every program)

5-2

Chapter 5

Developing Programs

How to Use DTL Functions Use the DTL library of commands to access real-time data from the data
table of a direct-connect PLC-5 programmable controller. The data is
transferred between the control coprocessor and the PLC-5 processor via
the connector interface between the two devices.

This section defines the available commands. For more details, see
Appendix B, Application Program Interface Routines.

Important: You must use the DTL_INIT function to initialize the

data-table library before using any data-transfer, data-definition, or
chassis-control functions

Configuration Functions

Use configuration functions to initialize the DTL software and establish an
internal data-definition table for data items. See Table 5.C.

Table 5.C
DTL Configuration Functions
Function What It Does Why You Need It When You Use It
DTL_INIT Creates and initializes the You must establish the data-definition | It is required and must be in the DTL function called in
data-definition table table before you call DTL functions your program; you should call it only once per program
DTL_C_DEFINE |Adds a data definition to the | For data transfer solicited by a C Required for C code data items
data-definition table application program
DTL_UNDEF Deletes a data definition from | To free the data-definition table entry | Should be called when a definition is no longer needed
the data-definition table to be reused for another data item
DTL_DEF_AVAIL |Returns the number of data | To check that you do not define more | When you want to keep track of how many definitions
definitions that can be added | data items than the data-definition have been defined at one time
to the data-definition table table can hold

Read/Write Access Functions

Use read/write access functions to exchange data between the directly
connected PLC-5 programmable controller and the control coprocessor.
See Table 5.D. The read/write functions listed are synchronous to the
application program; and they are all control-coprocessor initiated.

The DTL read/write functions are the quickest ways for the control
coprocessor to access data in an attached PLC-5 programmable controller.
Every read or write interrupts the programmable controller’s ladder-
program scan for approximately 1 msec, regardless of the length of the
transfer; therefore, you should make fewer transfers with greater transfer
lengths rather than several small transfers. The amount of time that it takes
for the coprocessor to retrieve data and have it available for the application
program follows this linear formula:

Time (msec) =1.2 msec + (0.012 msec x number of words)

Chapter 5

Developing Programs

Function

Table 5.0

DTL Read/Write Access Functions

What It Does

Why You Need It

When You Use It

DTL_READ W

Reads data from the PLC-5 programmable-
controller data table to the control-
Ccoprocessor memory

To perform a read of a
PLC-5 programmable-
controller data table

When you want to receive data from the PLC-5
programmable-controller data table

DTL_READ_W_IDX

Reads any elements of a file, one element at a
time, from the PLC-5 programmable controller to
the control-coprocessor memory using only one
data definition

To perform an indexed
read of a PLC-5
programmable-
controller file

When you want to receive any elements of a file
from the PLC-5 programmable-controller data
table using one data definition

DTL_WRITE_ W

Writes data from the control-coprocessor memory
to the PLC-5 programmable-controller data table

To perform a write to a
PLC-5 programmable-
controller data table

When you want to write data to a PLC-5
programmable-controller data table

DTL_WRITE_W_IDX

Writes any elements of a file, one element at a
time from the control-coprocessor memory to the
PLC-5 programmable controller using only one
data definition

To perform an indexed
write to a PLC-5
programmable-
controller file

When you want to write any elements of a file to
a PLC-5 programmable-controller data table
using one data definition

DTL_RMW_W Initiates an operation that: To perform a When you want the application program to
« reads a data element read/modify/write toa | read/modify/write an element of the PLC-5
« modifies some of the bits PLC-5 programmable- | programmable-controller data table
. data element
* then writes it back
DTL_ RMW_W_IDX | Initiates an operation that reads a data element of | To perform an indexed | When you want the application program to

the PLC-5 processor, modifies some of the bits
based on mask values, then writes the data
element back

read/modify/write to a
PLC-5 programmable-
controller file

read/modify/write any elements of a PLC-5
programmable-controller file using only one data
definition

Conversion Functions

Conversion functions convert data from one format to another. When you
specify an application data type in the definition of a data item, the read,
write, and receive functions automatically convert the data from the format
in the PLC-5 programmable controller to proper format for the control
coprocessor. The data types are as follows:

PLC Data Types Control-Coprocessor Data Types
signed word raw long
IEEE float byte ulong
ubyte float
word double
uword

See Table 5.E for DTL conversion functions.

5-4

Chapter 5

Developing Programs

Table 5.E
DTL Conversion Functions

Function What It Converts

DTL_GET_WORD | 2-byte array to host data-type word

DTL_GET_FLT Raw 32-bit IEEE float data, in 4-byte array, to host type float

DTL_GET 3BCD | A 3-digit BCD value stored in a 2-byte array to a control-coprocessor unsigned®

DTL_GET 4BCD | A 4-digit BCD value stored in a 2-byte array to a control-coprocessor unsigned®

DTL_PUT_WORD | Control-coprocessor unsigned to a 2-byte array(D

DTL_PUT_FLT Control-coprocessor float to a 4-byte array in IEEE 32-bit binary format

DTL_PUT_3BCD | Control-coprocessor unsigned to 2-byte, 3-digit BCD value®

DTL _PUT 4BCD | Control-coprocessor unsigned to 2-byte, 4-digit BCD value®

® Unsigned is the same as unsigned integer or unsigned long

Control-Coprocessor Memory Functions

Use DTL_SIZE and DTL_TYPE functions to determine the size and
location of control-coprocessor memory required to store the contents of
the data item in the control-coprocessor format. See Table 5.F.

Table 5.F

DTL Memory Functions
Function What It Does
DTL_SIZE | Determines the amount of control-coprocessor memory necessary to store the defined block of data
DTL_TYPE | Gets the data type of the defined block of data specified in DTL_C_DEFINE

Utility Function

Use the DTL_CLOCK function to synchronize the control-coprocessor
date and time with that of the PLC-5 programmable controller. The
control-coprocessor time is synchronized within 1 second of the PLC-5
programmable-controller clock. This is a one-time-only synchronization.
The application can maintain synchronization by calling DTL_CLOCK at
regular intervals.

Chapter 5

Developing Programs

How to Use BPI Functions

5-6

Function

The control coprocessor communicates with a standalone-mode
programmable controller using backplane-interface (BPI) functions. The
communication is via the 1771 1/O chassis backplane. You can also use
the BPI functions when you have a PLC-5 programmable controller
directly connected to the control coprocessor.

For backplane communication, the control coprocessor appears to the
programmable controller as a 16-bit, bidirectional I/O module. The control
coprocessor can perform both discrete- and block-data transfers.

Important: The only bits available for use by the application program
are the upper 8 bits (10-17). The lower 8 bits (0-7) are reserved for
block transfer, even if there are no block transfers programmed to the
control coprocessor.

You must prepare a control-logic program in the programmable controller
to initiate block transfer and/or discrete reads and writes with the control
coprocessor. See page 5-21 for an example of a control-logic program.

via discrete or block transfer in any chassis (remote or local) set
for 2-slot addressing; however, 1-slot and 1/2-slot addressing
are valid configurations for a chassis that contains a control
coprocessor communicating via discrete or block transfer with a
PLC processor.

c ATTENTION: The control coprocessor will not communicate

Update Discrete Data

Use BPI_DISCRETE to get the updated output-image word from the
PLC-5 programmable controller or send the input-image word to the
controller. The function determines whether it is an input or an
output word.

Accomplish Block-Transfer Reads and Writes

Use BPI_WRITE and BPI_READ routines to allow PLC-5 programmable-
controller reads and writes of block data across the backplane interface.

What It Does

BPI_WRITE

This routine interfaces with a synchronous block-transfer read from a programmable controller

BPI_READ

This routine interfaces with a synchronous block-transfer write from a programmable controller

How to Use Message
Instructions

Chapter 5

Developing Programs

The control coprocessor can receive unsolicited messages from the PLC-5
programmable controller. Two types of messages are supported:

= read data (word-range) from the control coprocessor
= write data (word-range) to the control coprocessor

The control coprocessor supports up to 32 unsolicited messages. The
control-coprocessor message numbers are 0-31 (ASCII). Use the control-
coprocessor MSG library of commands with a directly connected PLC-5
programmable controller.

PLC-5 Programmable-Controller MSG Instruction

A PLC-5 programmable controller uses the message (MSG) instruction for
unsolicited communication with the control coprocessor. You program the
MSG instruction in the ladder logic of the PLC-5 programmable controller.
This PLC-5 programmable-controller communication with the control
coprocessor is through the direct-connect mode side connector (Port 3A).

You specify a control-block address when you first enter the MSG
instruction. The programming terminal then automatically displays a
data-entry screen, where you enter instruction parameters that are stored at
the control-block address. You can also use the data-monitor screen to edit
selected parameters of the MSG instruction.

See the PLC-5 Programming Software Instruction Set Reference,
publication 6200-6.4.11, for more information on the message instruction.

PLC-5 Ladder-Logic Program
Enter the information in the PLC-5 programmable-controller message
control block. See Figure 5.1. Use only the choices listed:

= communication commands—PLC-3 word-range read or PLC-3 word-
range write

= destination data-table address—"00” through “31”
= port number—3A
Important: On the 6200 Series Programming Software data-entry screen,

specify 3A for the communication port numbé&iou must use the MG
data type for the control block if you want to set the port number.

5-7

Chapter 5

Developing Programs

Figure 5.1
MSG Instruction Data-Entry Screen (MG Control Block)

/ MESSAGE INSTRUCTION DATA ENTRY FOR CONTROL BLOCK MG10:10 \

Communication Command PLC-3 Word Range Write
PLC-5 Data Table Address: N7:3
Size in Elements: 1
Local/Remote: LOCAL
Remote Station: N/A
Link ID: N/A
Remote Link Type: N/A
Local Node Address: 00
Destination Data Table Address: “30”
Port Number 3A

BLOCK SIZE IS 56

Press a key to change a parameter or <ENTER> to accept parameters.

Program Forces:None Edits:None PLC-5/40 File DRILL1
Read/ PLC-5 Size in Local/l Remote Link Remote Local Destin Port

Write Address Elemnts Remote Station ID Link Node Address Number
FL F2 F3 F4 F5 F6 F7 F8 F9 FI10

Sample PLC-5 Ladder-Logic Program

Use the following sample ladder-logic program as a guide when you
prepare programs for your application. This example triggers or initiates a
message instruction every 10 seconds.

Figure 5.2
Example Ladder-Logic Program for PLC-5 Programmable Controller

T4:0 — TON
1/ TIMER ON DELAY —(EN—
DN TIMER T4:0

TIME BASE 1.0 DN
PRESET 10
ACCUM 0

T4:0 — MSG
] | SEND/REC MESSAGE —(EN—
DN CONTROLBLOCK MG10:0 —DN)

—(ER)

Control-Coprocessor Message Functions

The control coprocessor has message (MSG) functions that process
unsolicited messages from the PLC-5 programmable controller.

The control coprocessor supports both synchronous and asynchronous
message functions.

5-8

Function

Chapter 5

Developing Programs

This section defines the MSG functions that process unsolicited messages
from a PLC-5 programmable controller. See Appendix B, Application
Program Interface Routines, for more information.

Read/Write MSG Functions
Use read/write MSG functions to process unsolicited MSG instructions

from a PLC-5 ladder-logic program. See Table 5.G.

Table 5.G

Control-Coprocessor MSG Read/Write Processing Functions

What It Does

Why You Need It

When You Use It

MSG_READ_W_HANDLER

Processes an unsolicited PLC-5
MSG read instruction

To perform synchronous
processing of an unsolicited
PLC-5 MSG read instruction

When you want to transfer read data to
the PLC-5 programmable controller
before the next step of the application
program is executed

MSG_READ_HANDLER

Initiates processing of an
unsolicited PLC-5 MSG
read instruction

To perform asynchronous
processing of an unsolicited
PLC-5 MSG read instruction

When you want to transfer read data to
the PLC-5 programmable controller but
return control to the application program
before the message is executed (also,
see MSG_WAIT function)

MSG_WRITE_W_HANDLER

Processes an unsolicited PLC-5
MSG write instruction

To perform synchronous
processing of an unsolicited
PLC-5 MSG write instruction

When you want to receive write data
from the PLC-5 programmable controller
before the next step of the application
program is executed

MSG_WRITE_HANDLER

Initiates processing of an
unsolicited PLC-5 MSG
write instruction

To perform asynchronous
processing of an unsolicited
PLC-5 MSG write instruction

When you want to receive write data from
the PLC-5 programmable controller but
return control to the application program

before the message is executed (also,
see MSG_WAIT function)

When a PLC-5 programmable controller generates a Message READ instruction, a corresponding MSG_READ_HANDLER or
MSG_READ_W_HANDLER function must be used by the control coprocessor to handle the request. When a PLC-5 programmable controller
generates a Message WRITE instruction, a corresponding MSG_WRITE_HANDLER or MSG_WRITE_W_HANDLER function must be used by the
control coprocessor to handle the request.

When a PLC-5 programmable controller initiates an unsolicited read/write
MSG instruction, use read/write MSG functions in the control coprocessor
for transferring small amounts of databetween the programmable
controller and the control coprocessor. The maximum size that you can
specify for the buffer in the read/write MSG function is 240 bytes for a
read and 234 bytes for a write.

Fortransferring larger amounts of data between the programmable
controller and the control coprocessor, use a read/write MSG function in
conjunction with a read/write DTL function in your control-coprocessor
program. You can transfer up to 1,000 words between the control
coprocessor and a PLC-5 programmable controller using the read/write
DTL function.

5-9

Chapter 5

Developing Programs

For example, a PLC-5 programmable controller initiates an unsolicited
READ MSG instruction to the control coprocessor. The READ MSG
instruction transfers one word of data. The order of events is:

The control coprocessor program
responds with a
MSG_READ_HANDLER or
MSG_READ_W_HANDLER

The MSG_READ HANDLER or
MSG_READ_W_HANDLER triggers
a DTL_WRITE in the program, based
on the one word that was sent

then

Note: The DTL_WRITE function writes data from the
control coprocessor to the PLC-5 programmable controller.

Check Status of Asynchronous MSG Functions (MSG_WAIT)

When your application program uses asynchronous MSG read/write
functions, you must include at least one MSG_WAIT in your program.
MSG_WAIT checks for the completion of any combination of pending
read/write message number and updates the message number in a read
and write mask.

Mask Functions

Use the MSG_ZERO_MASK function to zero all the bits in a mask from
previous operations when you use a MSG_WAIT function in your
program. All the mask functions are used with the MSG_WAIT function.

Table 5.H
Mask Functions for Unsolicited, Asynchronous Read and Write Functions

Function What It Does

MSG_CLEAR_MASK | Clears the bits in the message read/write masks associated with a specified message number

MSG_SET_MASK Sets the bits in the message read/write masks associated with a specified message number

MSG_TST_MASK Tests the bits in the message read/write masks associated with a specified message number
MSG_ZERO_MASK | Used to zero all the bits in a specified message number

Clear Pending Messages
See page 5-13 for information on using the CC_MKILL utility to clear
pending messages from the message handler.

How to Use TAG Functions TAG functions provide a means for the user to specify access to control-
coprocessor memory. Use TAG functions to access memory for:

= external intelligent devices—i.e., ControlView connected to a serial port
= multiple processes interacting on OS-9

You can configure the size of the TAG table using the CC_CFG uitility.
The default size allows the creation of 1024 TAGs.

5-10

Chapter 5

Developing Programs

Important: For the 1771-DMC1 and -DMC4 modules, the default size
allows you to create 1024 TAGs; the -DMC module default size is zero.

Use the following sections to select the appropriate TAG function for your
application. See Appendix B, Application Program Interface Routines, for
the following information on these TAG functions: description, required
parameters, condition values, and a C program example.

TAG-Table Configuration Functions

Use these TAG configuration functions to establish a TAG table for TAG
functions:

Table 5.1

TAG-Table Configuration Functions
Function What It Does
TAG_DEFINE Places a TAG name entry into the TAG table
TAG_UNDEF Removes a TAG name or TAG names from the TAG table
TAG_DEF_AVAIL Determines the number of TAG definitions available in the TAG table
TAG_GLOBAL_UNDEF | Removes a TAG or TAGs from the TAG table defined by any process
TAG_LINK Gets a handle (offset) for a TAG table entry

Read and Write Functions

Use these TAG functions to read and write to coprocessor memory:

Table 5.4
TAG Read and Write Functions
Function What It Does
TAG_READ Reads data from a tagged memory area
TAG_READ_W | Reads data from a tagged memory area after the tag has been written by TAG_WRITE_W
TAG_WRITE Writes data to a tagged memory area
TAG_WRITE_W | Writes data to a tagged memory area, returns only after the tag has been read by TAG_READ W

Lock/Unlock Functions

Use the TAG_LOCK and TAG_UNLOCK functions as a pair in your
program. The TAG_LOCK function protects against concurrent access to
the tagged area of control-coprocessor memory. The TAG_UNLOCK
function is an unlock to the TAG locked by the TAG_LOCK function.

Important: Failure to use a TAG_UNLOCK function to complement a
TAG_LOCK function in a program may cause the system to hang-up.

5-11

Chapter 5

Developing Programs

How to Use CC Utility This section covers CC utility functions of the control coprocessor such as:
Functions - initialization

= error handling

= ASCII display interface functions

= synchronizing a control-coprocessor calling task to a PLC-5
programmable-controller ladder-logic program scan

Initialize Control-Coprocessor Function

Use the CC_INIT function to initialize the control coprocessor.

Important: TheCC_INIT function must be called before you can use
any other APl library function. Call the CC_INIT function first and once
only in your program.

Control-Coprocessor Error Functions

Use control-coprocessor error functions for error messages related to error
numbers. See Table 5.K.

Table 5.K
Error Functions
Function What It Does
CC_ERROR Provides a pointer to an error message for a corresponding error number

(for all API functions); typically used in a C routine

CC_ERRSTR Copies the error message to a corresponding error number to the user local
buffer (for all API functions); typically used in a BASIC procedure

Control-Coprocessor ASCII Display Functions

Use the ASCII display functions to show control-coprocessor status
information on the optional serial expander module display. See Table 5.L.

Table 5.L

ASCII Display Functions
Function What It Does
CC_DISPLAY_STR Displays a 4-character string on the ASCII display
CC_GET_DISPLAY_STR | Returns the value of the current ASCII display to user buffers
CC_DISPLAY_HEX Displays a 3-character hexadecimal value on the ASCII display

CC_DISPLAY_EHEX?® Displays a 4-character hexadecimal value on the display
CC_DISPLAY DEC® Displays a 4-character decimal value on the ASCII display

© You must know whether the fault displayed is hexadecimal or decimal when you use the 4-
character display. For example, if the ASCII display is 1234, it could be either a hexadecimal or
a decimal representation.

5-12

Chapter 5

Developing Programs

Synchronization Function

Use the CC_PLC_SYNC function to synchronize the control-coprocessor
calling task to the PLC-5 programmable-controller ladder-program scan.
This function automatically puts the current application to sleep until the
start of the next PLC-5 program scan.

Because of the multi-tasking feature of OS-9, it is most effective to
synchronize only one priority task to the PLC-5 programmable-controller
ladder-program scan.

Status Function

Use the CC_PLC_STATUS function to get the current status of the PLC-5
programmable controller.

Use the CC_STATUS and CC_EXPANDED_STATUS functions to get the
current status of the control coprocessor.

Clear Message-Handler Function

Use the CC_MKILL utility to clear pending message handlers so they are
available for use by other applications. For example, messages can still be
pending for an aborted or terminated application that was performing
message functions. These pending messages can cause the message
handler to be pending indefinitely.

Syntax for the CC_MKILL utility is:

cc_mkill {<opts>}

Function: Kill PLC Message Entry

Options: -r=<num> Kill Pending Read Message (0-31,[*])
-w=<num> Kill Pending Write Message (0-31,[*])
-a=* Kill All Read/Write Messages

Using this utility, you can clear one entry at a time or you can clear all
message handlers. The following example clears the read handler for
message 13:

$ cc_mkill -r=13
The following example clears all message handlers:

$ cc_mkill -a=*

5-13

Chapter 5

Developing Programs

Prepare Programs for In direct-connect mode, the control coprocessor can communicate directly

Direct-Connect Mode with a PLC-5 programmable controller using DTL and MSG functions.
Also, in direct-connect mode, you can use BPI functions for backplane
communication with a programmable controller. See page 5-18 for more
information on programs using BPI functions.

hardware memory protection between processes. It is the user’s
responsibility to ensure that programs do not overwrite memory
used by other programs or by the operating system. This could
result in unpredictable system operation.

Q ATTENTION: The control coprocessor does not incorporate

Direct-Connect Program Requirements and Flow

C Program Development BASIC Program Development
Start of main program
'
CC_INIT® AB_BAS(0)®
; :
DTL INIT® DTL INIT®
- v
DTL_C_DEFINE® DTL_C_DEFINE®

Write
Application Code®

Write
Application Code®

\J

DTL_or MSG_
functions

\J

DTL_or MSG_

BPI_ functions -
- functions

BPI_ functions

CC_and TAG_ CC_and TAG.
functions functions

© Function must be included first and once in each program. Note that for BASIC programs, CC_INIT is accessed using AB_BAS/(0).
@ Only necessary when using DTL_ functions.
@ The multi-tasking operating system can perform application processes that include combinations of the API functions.

5-14

Chapter 5

Developing Programs

Link API Functions to Programs

In C and assembler programs, ABLIB.L provides the interface (link) to the
library of control-coprocessor API functions.

In BASIC programs, AB_BAS provides the interface (link) to the library
of control-coprocessor API functions.

In C, BASIC, and assembler programs, use the CC_INIT function—use
AB_BAS(0) for BASIC programs—to initialize the control coprocessor.
The CC_INIT function must be called first and once only in every
application program that uses CC_ or DTL_ functions.

Sample C Program

The following is a C programming example. This example program uses
DTL_WRITE_W and DTL_READ_W functions to write data to a PLC-5
integer file, read the data, and display the data on the ASCII fault
display—on the optional serial expander module. The program continues
to write and read, incrementing the fault display value, while continuously
checking for errors.

Important: The CC_INIT function must be used in the following
program. Call the CC_INIT function first and once only in your program.

5-15

Chapter 5

Developing Programs

* * *

DTL_W_R.C — This program uses both the DTL_WRITE_W and DTL_READ_W
functions. It writes a single word to the PLC5’s N7:0 file and then

reads it back. The copro then copies the data to the 4-digit display

on the expander module. It will do this forever until the program

is terminated with a CTRL-E or a kill command from the OS-9 command line.
#include <stdio.h>

#include <copro.h>

char * CC_ERROR();

main()

* %k 3k F ¥ T

register unsigned ret_val; /* private variable declarations */
unsigned iostat;
unsigned id_n7;

INIT unsigned short buffer[1]; o
;Jrz?aﬁ\%_once in —>= CCLINIT(); [* initialize the coprocessor */
every program ret_val = DTL_INIT (1); /* just 1 definition */
if (ret_val != DTL_SUCCESS)
print_error (ret_val); [* print error... */
exit(-1); /* and exit */

ret_val = DTL_C_DEFINE (&d_n7, “N7:0,1, WORD,MODIFY"); /* init for n7:0 */
if (ret_val 1= DTL_SUCCESS)

{
print_error (ret_val);
exit (-1);
buffer[0] = 0; /* initialize data word */
while (1) /* let’s do this forever */
{
ret_val = DTL_WRITE_W (id_n7, buffer, &iostat); /* write to PLC5 */
if (ret_val '= DTL_SUCCESS) [* check ret_val */
break;
ret_val = DTL_READ_W (id_n7, buffer, &iostat); /* read back data */
if (ret_val '= DTL_SUCCESS) [* check ret_val */
break;
CC_DISPLAY_DEC (buffer[0]); [* display buffer[0] */
buffer[0] +=1; /* keep incrementing */
if (buffer[0] == 9999) [* we are past the limit of the */
buffer[0] = 0; [* 4 digit display */
tsleep (10); /* give us time to see the display */
print_error (ret_val); [* oops, we got an error - print it out */
print_status (iostat); [* print status also */
exit (-3); [* get out of here */
print_error (err) [* process error code */
int err;
{
char *errptr;
errptr = CC_ERROR (err); /* get pointer to string */
printf (\n Return Value = %4d - %s \n”, err, errptr); [* print it */
print_status (stat) [* process status code */
int stat;

char *errptr;
errptr = CC_ERROR (stat); [* get pointer to string */
printf (“\n Status Value = %4d - %s \n”, stat, errptr); /* print it */

5-16

Chapter 5

Developing Programs

Sample BASIC Program

The following is a BASIC programming example that illustrates the
interface to various API functions. The program uses CC_ERRSTR to
copy the status of the various functions and display the string to the
terminal—i.e., CC_INIT, DTL_INIT, DTL_CLOCK, and DTL_READ_W.

rem ** * *
rem * DEMO.BAS - This basic program demonstrates a few AB API functions *

procedure DEMO

DIM ret_val - INTEGER
DIM name_id 1 INTEGER
DIM iostat T INTEGER
DIM avail - INTEGER
' DIM rcvbuff - INTEGER
G AT DIM buffer . STRING[81]

is used; called by rem * CC_INIT - This call must be made before any other API functions are called

RUN AB_BAS(0) __ RUN AB_BAS (0)
This is the BASIC rem * CC_DISPLAY¥—SRR - Display the string -AB- on expander module
function number, ~ ——RUN-AB—BRS (val,“-AB-") . .
See Appendix B. rem * CC_ERRSTR-G#t the string for the ret_val - display on terminal
RUN AB_BAS (101,ret_val,ret_val, ADDR(buffer))

print buffer
rem * DTL_INIT - Initialize DTL for 4 definitions
RUN AB_BAS (1,ret_val,4)
rem * CC_ERRSTR - Get the string for the ret_val - display on terminal
RUN AB_BAS (101,ret_val,ret_val, ADDR(buffer))
print buffer
rem * DTL_CLOCK - synchronize our clock with the PLC-5
RUN AB_BAS (18,ret_val)
rem * CC_ERRSTR - Get the string for the ret_val - display on terminal
RUN AB_BAS (101,ret_val,ret_val, ADDR(buffer))
print buffer
rem * DTL_C_DEFINE - Define a data element
RUN AB_BAS (2,ret_val, ADDR(name_id),“n7:0,1,long,MODIFY")
rem * CC_ERRSTR - Get the string for the ret_val - display on terminal
RUN AB_BAS (101,ret_val,ret_val, ADDR(buffer))
print buffer
rem * DTL_DEF_AVAIL - How many are available now? (4 -1 ="7?)
RUN AB_BAS (4,ret_val,ADDR(avail))
rem * CC_ERRSTR - Get the string for the ret_val - display on terminal
RUN AB_BAS (101,ret_val,ret_val, ADDR(buffer))
print buffer
rem * Print how many definitions are available now
print avail
rem* DTL_READ_W - Read form N7:0 1 word into rcvbuff
RUN AB_BAS (5,ret_val,name_id,ADDR(rcvbuff), ADDR(iostat))
rem * CC_ERRSTR - Get the string for the ret_val - display on terminal
RUN AB_BAS (101,ret_val,ret_val, ADDR(buffer))
print buffer
rem * Print iostat
print iostat
rem * Print the read data
print revbuff
rem * CC_DISPLAY_EHEX - Display read data to the expander display
RUN AB_BAS (105,ret_val,rcvbuff)
rem * CC_ERRSTR - Get the string for the ret_val - display on terminal
RUN AB_BAS (101,ret_val,ret_val, ADDR(buffer))
print buffer
end

5-17

Chapter 5

Developing Programs

Prepare Programs for In standalone mode, use BPI_ functions to communicate with a
Standalone Mode programmable controller.

hardware memory protection between processes. It is the user’s
responsibility to ensure that programs do not overwrite memory
used by other programs or by the operating system. This could
result in unpredictable system operation.

Q ATTENTION: The control coprocessor does not incorporate

Standalone Program Requirements and Flow

C Program Development BASIC Program Development

Start of main program Start of main program
1

CC_INIT® AB_BAS(0)®

v

Write
Application Code®

Write
Application Code®

|

CC_and TAG_
functions

CC_and TAG_

; BPI_ functions
functions -

BPI_ functions

@ Function must be included first and once in each program. Note that for BASIC programs, CC_INIT is accessed using AB_BAS/(0).
@ The multi-tasking operating system can perform application processes that include combinations of the BPI_, CC_, and TAG_ functions.

Link API Functions to Programs

In C and assembler programs, ABLIB.L provides the interface (link) to the
library of control-coprocessor API functions.

In BASIC programs, AB_BAS provides the interface (link) to the library
of control-coprocessor API functions.

In C, BASIC, and assembler programs, use the CC_INIT function—use
AB_BAS(0) for BASIC programs—to initialize the control coprocessor.
The CC_INIT function must be called first and once only in any program
that uses CC_ or DTL_ functions.

Sample C Program
The following is a C programming example. It uses both BPI_WRITE and

BPI_READ functions to trigger programmable-controller block-transfer
writes and reads. See page 5-21 for more information.

5-18

Chapter 5

Developing Programs

Important: The CC_INIT function is used in the following program.
Call the CC_INIT function first and once only in your program.

bt w_r.c
This program uses both the BPI_WRITE and BPI_READ functions. It
continuously triggers the PLC to do block transfer writes to the
coprocessor. The coprocessor write the data to the user screen

and then copies the first five words to the out_buffer that will be

sent back to the PLC as part of this loopback test.

* X X X X X =3

* /

#include <stdio.h>

#include <copro.h>

#define CLEAR_SCREEN() printf(*\33[2J") [* Clear screen macro */
#define MOVE(x,y) printf(*\33[%d;%dH", y, x) /* Move cursor macro */
#define TIMEOUT 4

#define R_LENGTH 10

#define W_LENGTH 5

#define R_TRIG 0x0100

#define W_TRIG 0x0200

main()

register unsigned ret_val; /* private variable declarations */
intx,y=0;

unsigned short in_buffer[10];

unsigned short out_buffer[5];

for (x=0; x < 10; x++) [* Initialize in buffer */
in_buffer[x] = 0;
Use CC_INIT X =0; /* Reinitialize for later */
firstandoncein —»€C_INIT(); /* initialize the coprocessor */
every program CLEAR_SCREEN();
while (1){

[* Trigger the BTW from the PLC with this BPI_READ function */
ret_val = BPI_READ (R_LENGTH, in_buffer, TIMEOUT, R_TRIG);
if (ret_val = DTL_SUCCESS){

print_error (ret_val);

exit(10); [* Print error and exit */
for (x=0; x < 5; x++) [* Copy first 5 words of */
out_buffer[x] = in_buffer[x]; /* input to output buffer */
/* Print the results of the block transfer continuously on the screen */
MOVE(0,2); I* Move cursor to top of screen */

for (x=0; x < 10; x++)
printf (“Word %d of the PLC BTW = %d \n”, X, in_buffer[x]);
printf (“\n\nFree running timer showing communication activity %d\n”, y++);
/* Now trigger the PLC to do a BTR with this BPI_WRITE function */
ret_val = BPI_WRITE (W_LENGTH, out_buffer, TIMEOUT, W_TRIG);
if (ret_val = DTL_SUCCESS){
print_error (ret_val);

exit(20); [* Print error and exit */
} [* End of while(1) loop */
[* End of main */
print_error (err) /* process error code */
int err;

char *errptr;

errptr = (char *) CC_ERROR (err); /* get pointer to string */

printf (\n Return Value = %4d - %s \n", err, errptr); [* print it */

printf (“\n\nIf you got a time out error, check that you are in RUN mode\n”);
}

5-19

Chapter 5

Developing Programs

Sample BASIC Program

The following is a BASIC programming example. It uses both
BPI_WRITE and BPI_READ functions to trigger programmable-
controller block-transfer writes and reads.

rem Sample BPI Basic Program
dim retval, rdata(10),wdata(5),loopcnt,timeout,trigmask,i:integer
dim Wlength,rlength:byte
loopcnt=0
rem timeout is number of seconds BPI_BTR or BPI_BTW will be attempted by CO_PRO
timeout=4
rem rlength is BTW length in plc; when CO-PRO does a BPI_BTR, plc does a BTW
rlength=10
rem wlength is BTR length in plc; when CO-PRO does a BPI_BTW, plc does a BTR
wlength=5
rem trigmask is value written to input image table; can be used to trigger BTs
trigmask=0
rem initialze the BPI_BTW data
FORi=1t05
wdata(i)=0
) NEXT i
CC_INIT function rem initialize coprocessor with CC_INIT, which is AB_BASIC function number 0.
is used; called by —» RUN AB_BAS(0)
RUN AB_BAS(0) rem do a clear screen
PRINT CHR$(27);[2J"
1 rem line #1 used for got to
rem do a logical or of trig mask to set bit 10
trigmask=LOR(256,trigmask)

This is the BASIC rem BPI_BTR . .
function number. —RUN-ABBAI rIength,addr(rdata(l)),tlmeout,trlgmask)
IF retval<>0 THEN

See Appendix B.
PRINT CHR$(27);[15,0H"
PRINT “BTR retval=";retval
rem return the first 5 words of the BPI_BTR in the BPI_BTW
ELSE
FORi=1TO5
wdata(i)=rdata(i)
NEXT i
rem cursor home
PRINT CHR$(27);“[H"
FORi=1TO 10
PRINT “WORD 7;i;* OF PLC BTW = ";rdata(i)
NEXT i
rem erase to end of screen
PRINT CHR$(27);“[J”
ENDIF
rem reset bit 10
trigmask=LAND(-257,trigmask)
rem just a screen activity indicator
PRINT CHR$(27);[13,0H SCREEN REFRESH INDICATOR ”;loopcnt
loopcnt=loopcnt+1
rem do a logical or of trig mask to set bit 11
trigmask=LOR(512,trigmask)
rem BPI_BTW
RUN AB_BAS(33,retval,wlength,addr(wdata(1)),timeout,trigmask)
IF retval<>0 THEN
PRINT CHR$(27);“[16,0H"
PRINT “BTW retval=";retval
ENDIF
rem reset bit 11
trigmask=LAND(-513,trigmask)
GOTO 1

5-20

Chapter 5

Developing Programs

Sample Control-Logic Program

The following is a control-logic programming example. This control-logic
program initiates a block-transfer write and a read when triggered by the
control coprocessor. See the sample C—on page 5-18—and BASIC— on
page 5-20—control-coprocessor programs.

Rung 2:0

This block-transfer write will be triggered when bit 10 of the input image is
set by the control coprocessor. The coprocessor triggers this bit using the
trigger mask within the BPI_READ function. The second conditional bit is the
enable bit of the block-transfer control block. This ensures that the rung

will be toggled false to true every time the block transfer completes. The
coprocessor is located in rack 0, group 2 of the chassis.

[1:002 N10:0 Y Y A — + |
+=] [+BLOCK TRNSFR WRITE ~ +-(EN)-+
10 15 |Rack 00 |
|Group 2+-(DN) |
|[Module o |

|
[
[
| |Control Block N10:0+-(ER) |
| |Data file N10:10] |
|
|
|

|Length 10 |
|Continuous Nl |
[S — + |

Rung 2:1

This block-transfer read will be triggered when bit 11 of the input image is

set by the control coprocessor. The coprocessor triggers this bit using the
trigger mask within the BPI_WRITE function. The second conditional bit is the
enable bit of the block-transfer control block. This ensures that the rung

will be toggled false-to-true every time the block transfer completes.

[1:002 N11:0 TE) - S — +
+=] [+BLOCK TRNSFR READ +-(EN)-+
11 15 |Rack 00| |
|Group 2+-(DN) |
[Module o |

|Control Block N11:0+-(ER) |
|Data file N11:10] |

|

|

|

|

[

| |Length 5] |

| |Continuous N| |
| ommmm e + |
Rung 2:2

[|

+ [END OF FILE] +
[[

NO MORE FILES

5-21

Chapter Objectives

Chapter

Using the Ethernet Interface

This chapter provides an overview of the Ethernet local area network
capability of the control coprocessor. It provides information on how to:
= connect to the network using a transceiver (Medium Access Unit)

= configure the Ethernet port

= send/receive communication using the FTP and TELNET utilities

= prepare client/server applications using socket-library calls in your
C program

= send/receive communication using Allen-Bradley’'s INTERCHANGE
software and the INTERD daemon

= use the SNMPD daemon

For information on: See page:
— Introduction
Ethernet communication 6-1
Connecting Ethernet to the network 6-2 |
y Installing the Control Using the Ethernet
Addresses for the Ethernet port 6-3 Coprocessor Interface
Modifying the Ethernet configuration files 6-4 ‘ ‘
Configuring the Ethernet port 6-12 gen:ngl gtaned with the Using the Serial Ports
Using the 0S-9/Internet FTP utility 6-12 ontrof Loprocessor
Using the 0S-9/Internet TELNET utility 6-17 : |) X |
- - - Using the Programming Interpreting Fault
Using the Internet socket library in C programs 6-19 Environment Codes and Displays
Using the INTERD daemon with INTERCHANGE software 6-22 \
Using the SNMPD daemon 6-27 Developing Programs

Ethernet Communication

Ethernet is a local area network that provides communication between
various computers (hosts) at 10 Mbps. The communication can be via
thick- or thin-wire coaxial cable. The control coprocessor communicates
using the OS-9/Internet software package.

0S-9/Internet provides communication between OS-9 and other Internet
systems using Transmission Control Protocol/Internet Protocol (TCP/IP).
0OS-9 Internet C library functions provide a programming interface nearly
identical to the BSD UNIX “socket” interprocess communication facilities.

Chapter 6

Using the Ethernet Interface

OS-9/Internet provides utilities for file transfer (FTP) and terminal
connection (TELNET) to remote systems on the network. OS-9/Internet
also provides socket-library functions that you use to write network
client/server application programs.

See the OS-9 Internet Software Reference Manual, publication
1771-6.4.11, for information on FTP and TELNET utilities and OS-9
socket library.

Important: BASIC users cannot reference socket-library functions
directly. The BASIC program must fork another process written in C.

Connecting Ethernet to The Ethernet port connects to a thin-wire or a thick-wire (coaxial) network
the Network via a 15-pin transceiver or Medium Access Unit (MAU) connection. The
Allen-Bradley transceivers available for this interface are:

= 5810-AXMT (thin-wire Ethernet/802.3)
= 5810-AXMH (thick-wire Ethernet/802.3)

A network with thick-wire coaxial cable can be up to 500 meters (1,525

feet) with up to 100 nodes. Thick-wire cable is referred to as “10base5”
—this means that it has a 10 Mbps transmission rate, baseband, and can be
500 meters in total length.

A network with thin-wire coaxial cable can be up to 200 meters (610 feet)
with up to 32 nodes. Thin-wire cable is referred to as “10base2”—this
means that it has a 10 Mbps transmission rate, baseband, and can be 200
meters in total length.

The control coprocessor connects to the transceiver using either a 2.0 meter
(6.5 feet) or a 15 meter (49.2 feet) transceiver cable, which is also known

as an Access Unit Interface (AUI) cable. The Allen-Bradley cable
numbers/kit catalog numbers are:

Catalog Number Contents

1785-TC02/A Thick-wire 2.0 m (6.5 ft) transceiver cable
1785-TC15/A Thick-wire 15.0 m (49.2 ft) transceiver cable
1785-TAS/A (kit) Thin-wire transceiver and 2.0 m (6.5 ft) cable
1785-TAM/A (kit)y | Thin-wire transceiver and 15.0 m (49.2 ft) cable
1785-TBS/A (kit) Thick-wire transceiver and 2.0 m (6.5 ft) cable
1785-TBMJA (kit) | Thick-wire transceiver and 15.0 m (49.2 ft) cable

To install the cable, attach the cable male connector to the Ethernet female
connector on the control-coprocessor main module. See Appendix C for
more information on cable configuration and pin assignments.

See the Installation Data, Allen-Bradley Ethernet/802.3 Transceiver,
publication 5810-2.1, to connect the transceiver to your Ethernet network.

6-2

Chapter 6

Using the Ethernet Interface

Addresses for the You must have two separate and unique addresses for the control-
Ethernet Port coprocessor Ethernet port:

= software configurable Internet Protocol (IP) address and host name that
you acquire from your network manager

= hardware Ethernet address that is assigned to the control coprocessor by
Allen-Bradley at the factory—see the section on configuring the
Ethernet port to identify this address on page 6-11

Acquiring Your IP Address

If you are adding the control coprocessor to an existing network, contact
your network administrator to get an IP address. IP addresses must be
unique; each address is dependent on how your network is configured and
whether the local area network has a gateway to other networks.

Important: Do not make up your own IP address. Get the number from
your network administrator; your network administrator should have
acquired a set of numbers from InterNIC Registration Services. If you do
not have a network administrator, get your numbers from InterNIC
Registration Services.

You can get IP addresses by contacting InterNIC Registration Services via
electronic mail tdhostmaster@rs.internic.net . If electronic mail is
not available to you, mail a hardcopy request to:

Network Solutions

Attention: InterNIC Registration Services
505 Huntmar Park Drive

Herndon, VA 22070

You can also contact InterNIC Registration Services at 1-703-742-4777.

Acquiring a Host Name

Indicate your preference for a host name. Host names must be unique
within a domain. Host names must start with a letter and be only
alpha-numeric with dashes and/or underscores.

A host name consists of a word or other character string. The character
string usually consists of lower-case characters. The string is typically a
maximum of 8 characters. The full host name includes both the host name
and the domain name. For example:

Host name: maggie
Domain: “copro.ab.com”
Full host name: “maggie.copro.ab.com”

6-3

Chapter 6

Using the Ethernet Interface

Modifying the Ethernet
Configuration Files

6-4

Make a list of all the hosts with their IP addresses that are on the same
physical network as the control coprocessor. Also, make a list of all the
hosts with their IP addresses that are on other networks with which you
will communicate regularly through a gateway. You will use this
information to update the configuration files.

The following generic network database files are included on your
software installation disk in the INET directory. Using the DOS editor
on your personal computer, update the files with information specific to
your system.

After you have updated all the files, configure the control-coprocessor
Ethernet port using the Internet Utilities of PCBridge. See page 6-12.
It is not necessary to send each file to the control coprocessor separately.

Important: The BASIC user must have PCBridge to update the
configuration files and configure the control-coprocessor Ethernet port.

HOSTS File

Change file C:AINET\HOSTS to include your system information. The
first non-comment and non-blank line is for the loopback host and should
not be changed. The lines that follow are for hosts on your network. You
list the following information for each host:

= |P address

= host name

= full host name

= aliases (optional)

You should include the alias “localhost” for the control coprocessor.

You can organize the data either by frequency of use or in an order
designated by your network administrator. See Figure 6.1.

Figure

6.1

Chapter 6

Using the Ethernet Interface

List of Hosts on Network

-~

HEHEES

127

19z
192
192
192

138@.
138.
138.
13@.
138.
138.

5 list hosts
#

Sample Network

The internet number can be generally anything except B or 255.
If your are connecting to the DARPA intermet, you already know
what network numbers should be used.

.8.8.1 loopback
151.128.1 me localhost
151.128.2 taro
151.128.3 grin
151.128.95 gespack
151.132.188 rc_mike
151.132.188 copro_12
.52.189.1 alpha
.52.189.2 beta
.52.189.3 gamma
.52.189 .4 delta

Q
uTi8a

17:84 -CA -PR -LO +LF -LE +X0 -CT CD COMZ 384AANB1 PCBridge 4/////

HOSTS.EQUIV File

The file CAINET\HOSTS.EQU is required for the OS-9 Internet database
INETDB but is not used by the control coprocessor. Do not modify this
file. A sample is shown in Figure 6.2.

DOS limits file names to eight characters—not including a 3-digit
extension—and thus PCBridge renames the file to HOSTS.EQU.
However, the OS-9 name BOSTS.EQUIV.

Figure 6.2
List of HOSTS.EQUIV
ﬁ
$
$
$
$
$
9
$
$
$
$
$
$
S dir
Directory of . 18:88:38
hosts hosts.equiv inetdb leB_147
sassuord protocols services startinet
$
§ list hosts.equiv
#
used for rcp/rsh (not supported)

UT1a8

/o

18:87 -CA -PR -L0 -LF -LE +X0 -CT CD COM1 9688N81

\

networks

PCBridge 4/////

6-5

Chapter 6

Using the Ethernet Interface

NETWORKS File

Change file CAINET\NETWORKS to include a line for the network to
which the control coprocessor will be physically attached, giving the
domain name and the subnet address of the domain. Also, include the
aliases “ethernet” and “localnet.” A sample NETWORKS file is shown
in Figure 6.3.

Figure 6.3
List of NETWORKS File

~

% list networks
[]
Microware local network

loopback 127

os9-ether 192.52.189 ethernet localnet
sun-ether 192.9.280

test-ether 192.6.180

#
Internet networks
#

arpanet 18 arpa
uch-ether 46 uchether

$

\\\\\\\UTIBB 17:82 -CA -PR -LO +LF -LE +X0 -CT CD COMZ 3B84B@NB1 PCBridge ‘//////

PROTOCOLS File

The file C:\INET\PROTOCOL is required for the Internet database. Do
not change the file. An example PROTOCOLS file is shown in Figure 6.4.

DOS limits file names to eight characters, and thus PCBridge

renames the file PROTOCOLS to PROTOCOL; however, the OS-9
name remains PROTOCOLS.

6-6

Chapter 6

Using the Ethernet Interface

Figure 6.4
List of PROTOCOLS File

i N

g dir
Directory of . 18:18:55
hosts hosts.equiv inetdb leB_147 networks
password protocols services startinet
§ list protocols
|3
& "“PROTOCOLS"
|3
ip a IP #internet protocol, pseudo protocol number
icmp 1 ICHP # internet control message protocol
qyp 3 GGP # gateway-gateway protocol
tcp 6 TCP # transmission control protocol
egp 8 EGP # exterior gateway protocol
pup 1z PUP # PARC universal packet control
udp 17 UDP # user datagram protocol
hmp 28 HHMP # host monitoring protocol
xng-idp 2Z XNE-IDP ¥ Xerox NE IDP
rdp 27 RDP # '"reliable datagram' protocol
nd 77 ND # Sun ND protocol
raw 255 RAW # is this really a protocol?
max 256 MAX # ie thie really a protocol?

§
\\\\\fﬁlﬁﬁ 18:18 -CA -PR -LO -LF -LE +X0 -CT CD COM1i 9688N81 PCBridge 4/////

SERVICES File

The file C:\INET\SERVICES contains standard Internet information
followed by information that applies to your system. If you write
socket-library programs to establish application-specific servers, place the
“well-known” port numbers of your new services at the end of this file.

We recommend that you use numbers larger than 3000 for your services.
See Figure 6.5 through Figure 6.8 for an example.

The last three entries in Figure 6.8 show an example of application-specific
modifications to the SERVICES file.

6-7

Chapter 6

Using the Ethernet Interface

Figure 6.5
List of SERVICES File (Sheet 1)

"'SERVICES" A\\\\\

=

#

Internet port-/socket assignments

#

echo TAudp

echo T/tcp

digcard 9/udp gink null
discard 97tcy sink null
systat 11/tcp

daytime 13/udp

daytime 13/tcp

netstat 15/tcp

chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp-data 28/tcy

ftp 21/tcp

telnet 23/tcy

smtp Z5/tcp mail

time 37/tcp timserver

time 37/udp timzerver

name 42/tcp nameserver

whois 43/tcp mnicname
\\\\iﬁlﬁﬁ iA:11 -CA -PR -LO -LF -LE +X0 -CT CD COM1 96B8NB1 PCBridge 4/////

Figure 6.6
List of SERVICES File (Sheet 2)

domain 53/udp

domain L3/tcyp

hostnames 181/tcp hostname t usually to sri-nic
sunrpc 111/udp

sunrpc 111/tcp

#

Host-specific

tftp 69/udp

rje T7/udp

finger 79/udp

Link 87/udp ttylink

supdup 95/udp

izso-tsap 182/tcp

X408 183/tcp # IS0 Hail

x488-snd 184/tcp
csnet-ns 185/tcp

pop 189/tcp postoffice ¥ Post O0ffice

uucp-path 117/tcp

nntp 119/tcp usenet

ntp 123/tcp

NelS 144/tcp news # Window System

uTi8a 18:11 -CA -PR -LO -LF -LE +X0 -CT CD COM1 968B8NB1 PCBridge

6-8

Chapter 6

Using the Ethernet Interface

Figure 6.7
List of SERVICES File (Sheet 3)

/L N

UNIX specific services

B

exec E12/tcp

login 513/tcp

shell 514/tcp cmd # no passwords used
printer 515/tcp spooler # experimental
courier 538/tcp rpc & experimental

biff 512/udp comsat

who 513/udp whod

syslog 514/udp

talk 517/udp

route £28/udp router routed

timed 525/udp timeserver

netnews 53Z/tcp readnews

uucp 54@8/tcp uucpd # vucy daemon
new-rwho 558/udp new-who # experimental
rmonitor S6A/udp rmonitord # experimental
monitor 561/udp # experimental
ingreslock 1524/tcp

i
\\UTiBB 18:11 -CA -PR -LO -LF -LE +X0 -CT CD COHM1i 96B8N81 PCBridge /

Figure 6.8
List of SERVICES File (Sheet 4)

route 5Z8/udp router routed
timed 5257udp timeserver

netnews 532/tcp readnews

uucp S548/tcp uucpd # wucp daemon
new-rwho 558/udp new-who # experimental
rmonitor S6B/udp rmonitord # experimental
monitor Sel/udp # experimental
ingreglock 1524/tcp

#

08-9 specific services

#

0sYsry 2688/ udp unisry

unisry Z6B8/udp os9sry

#

Application-specific services (for this project)

#

from_ area 3061/tcp

to_area 3882/ tcp

heck_net 3883/tcp

[
$
\\\\\\VUTlﬂB 18:11 -CA -PR -LO -LF -LE +X0 -CT CD COM1 96BEN81 PCBridge

6-9

Chapter 6

Using the Ethernet Interface

STARTINET File
The STARTINET procedure file is used to start the network.

Edit the secondsétip) line of file CAINET\STARTINE by inserting the
following information as appropriate for your network:

= |P address

= broadcast address

= subnet mask

= host name (optional)

= target gateway address (optional)

IP Address The IP address is the only required parameter on the setip
line, as shown below.

setip X XXX XX XX X XXX node_name X.X.X.X
Copo —r— —— —— ——
_— L Gateway
IP address BroadcastJ J L Host address
IP address Subne name
mask

wherex = 0-255 decimal

You can also invoke the setip command at the OS-9 prompt. This changes
any of your Internet settings dynamically.

Broadcast Address The broadcast address specifies the range of
addresses that will receive your broadcast messages. It also determines the
range of addresses from which you receive broadcast messages.

The default broadcast address is your IP address with the last byte set to
255. This sets the broadcast range to only your internal subnets (no
external addresses) when the subnet mask is set to 255.255.255.0.

Subnet Mask The subnet mask allows your system administrator to
divide your internal network into separate subnets. The standard mask is
255.255.255.0 and allows up to 256 subnets on your internal network.

Host Name The host name allows the socket cathgstbyname () to
return the name that you configured on the setip line as previously shown.

Target Gateway Address The target gateway address is only needed if
you require immediate routing after power-up. It otherwise can take up to
30 seconds for the routing table to be initialized.

DOS limits file names to eight characters, and thus PCBridge uses the file

name STARTINE. However, it is renamed STARTINET when it is sent to
the control coprocessor.

6-10

Chapter 6

Using the Ethernet Interface

The STARTINET procedure file is used to start the network. This file
indicates which network daemons—e.g., FTP, TELNET, INTERD,
SNMPD—are loaded at reset. See Figure 6.9 for an example STARTINET
file. The example file shipped in revision 1.20 and later of the PCBridge
software (1771-PCB) includes the startup of the INTERD and SNMPD
daemons. You can modify this file to choose which daemons are started
for your system. A line started with an asterisk (*) is a comment line.

Important: If you want to use the INTERD daemon, you must have
Series A Revision E (1.30) or later of the coprocessor firmware.

Figure 6.9
List of STARTINET File
@t startinet \
load -d inetdb * load inet database from ram-drive
load -d interd ;* load interd from ram-drive
load -d skimp ;* load snmpd from ram-drive
setip 130.151.128.1 130.151.228.255 255.255.255.0 taro
load -d le0_147 ;* load lance/enet descriptor from ram-drive
load -d socket ;* load socket descriptor from ram-drive
mbinstall ;* load and start mbuf handler
routed<>>>/nil& ;* start up routed
* ispstart& ;* comment since routed is running we don't need it
sleep 2 ;* wait a couple seconds until things calm down
telnetd <>>>/nil& ;* start daemon if we’d like to support telnet
ftpd <>>>/nil& ;* start daemon if we'd like to support ftp
interd <>>>/nil& ;* start daemon if we'd like to support interchange
snmpd <>>>/nil& ;* start daemon if we'd like to support snmp
chd /dd +* go to top of ram-drv directory

$
\\UTiBB 17:84 -CA -PR -LO +LF -LE +X0 -CT CD COMZ 3B4BBNB1 PCBridge /

Password File

You must have a password file when using Ethernet. See the Create a User
Startup File section in Chapter 3 to set up your password file.

Ethernet Hardware Address

If your network administrator requires the control-coprocessor Ethernet
hardware address, then at hprompt, entefestat /le0 . You get the
screen illustrated in Figure 6.10. The Ethernet address is shown on the
fourth line in the example.

Important: The lestat utility works only after the Ethernet port is
initialized by the startup procedure file.

6-11

Chapter 6

Using the Ethernet Interface

Configuring the
Ethernet Port

Using the 0S-9/Internet
FTP Utility

6-12

Figure 6.10
List Ethernet Hardware Address

2
/

BRI LR LB L

§ lestat ~led

this=181b5358 next=18193818 prev-101b4ebB static-101b5420 size-00000208
name=1leB driver=am?998 mtu=1588 [lags=ABZ22

af =2 port=8 ipaddr=138.151.168.201

Ethernet address = B:B:bc:1b:@8:18

busy=B runming=1

in=127878 out=1 inerr=5 outerr=1 coll=8

unkirg=8 recwv=127878 irecwv=127878 fram=5 oflo=B crc=5 rbuf=0 miss=B bogus=8
xirg=1 trys=1 xmit=1 more=8 one=-8 defer=8 tbuf=-8

uflo=8 lcol=8 lcar=1 retry=-8 babl=B eng=8 tailirg-B seen=8

$
\\\\\\?TIBB 18:17 -CA -PR -LO -LF -LE +X0 -CT CD COM1 9688N81 PCBridge //////

To download the Ethernet configuration files to the control coprocessor
and initialize the Ethernet port:

1.

2.

Selectl) Internet Utilities on the PCBridge main menu.

SelectS) Setup 0S-9 Internet on the next menu.

This causes the configuration files to be sent to the control
coprocessor. These files will be stored in the SYS directory on the
control-coprocessor RAM disk.

At the OS-9 prompt, typestartinet and presfReturn]
—this invokes the STARTINET procedure file to start up the
Internet software.

You can now use TELNET, FTP, and the socket library for your custom
Internet applications. See tS-9 Internet Software Reference Manual,
1771-6.4.11, for more information. Also, refer to the README file in the
INET directory for more information.

The file transfer utility (FTP) is used to transfer files to and from remote
systems. There are many FTP commands to facilitate file manipulation
between systems. See the OS-9 Internet Software Reference Manual,
1771-6.4.11, for more information on the FTP utility.

Chapter 6

Using the Ethernet Interface

FTP Send Session

The following example shows how you might conduct an FTP
send session:

Important: The following send session is an example only. It represents
how one network is set up and accomplishes an FTP session.

1. Atthe$ prompt, list the file to transfer. See Figure 6.11.

Figure 6.11
Starting FTP

g \
f $ list hosts.equiv
i

used for rcp/rsh (not supported)
#

4

§ ftp

Not connected.

HMode: stream Type: ascii Form: wnon-print Structure: file
Uerbose: on Bell: off Prompting: on Globbing: on
Hash mark printing: off Use of PORT commands: on

fitp>

fip> help

Available commands:

$ append ascii bell binary bye cd
chd close connect delete debug dir form
get glob hash help lcd Ichd ls
mdelete mdir mget mkdir makdir mls mode
mput open prompt sendport put puwd pd
quit quote recv remotehelp rhelp rename rmdir
send status struct type user verbose ?

Ftp>
\\ uT188 16:38 -CA -PR -L0 -LF -LE +X0 -CT CD COM1 96B8N81 PCBridge /

2. Atthe$ prompt, typetp and presfReturn] . See Figure 6.11.
This utility starts the interface to the ARPANET standard File
Transfer Protocol and displays the initial status.

3. Attheftp prompt, typehelp and pres§Return] . See Figure 6.11.
You get a list of all the available FTP commands.

4. Attheftp prompt, typenelp connect and pres§Return]. See
Figure 6.12 to get information about the FTP connect command.

6-13

Chapter 6

Using the Ethernet Interface

Figure 6.12

FTP Help

/ Available commands: \

append ascii bell binary bye cd

chd close connect delete debug dir form
get glob hash help lcd lchd ls
mdelete mdir mget mkdir makdir mls mode
mput open prompt sendport put pud pd
quit quote recv remotehelp rhelp rename rmdir
send status struct type user verbose 7
fip>

ftp> help connect

connect: conmect to remote tftp

fip>

ftp> help dir

dir: get a directory from the remote system
fip>

ftp> help chd

chd: change directory on remote system
fip>

ftp> help led

led: change directory on local system
ftp>

ftp>
\\\\\\\ uT188 16:39 -CA -PR -LO -LF -LE +X0 -CT CD COM1 96PBN81 PCBridge 4//////

5. Attheftp prompt, typeconnect and pres§Return] . See
Figure 6.13.

Figure 6.13
Connect to Remote Network

. N

S ftp

Not connected.

Hode: stream Tupe: ascii Form: non-print Structure: file
Verbose: on Bell: off Prompting: on Globbing: on
Hagsh mark printing: off Use of PORT commands: on

fip>

fitp>

ftp> connect

(to) group_2

Connected to group_2.

228 group_2 08-9 ftp server Ul.8 ready
Name (group_2:super): super
Password (group_2isuper):

331 password required for super
238 uszer super logged in

fip>

ftp> pd

251 '"v/44" is current directory
ftp>

\\\:T?BB 1:55 -CA -PR -LO +LF -LE +X0 -CT CD COMi1 192@8N81 PCBridge //////

6. Atthe(to) prompt, enter the name of the remote host. For this
example, the remote hostgsup_2 .

7. Enter user information (username and password) at the prompt. See
Figure 6.13. We receive a login confirmation message.

8. Attheftp prompt, typepd and pres§Return] for the current
remote network directory name. See Figure 6.13.

9. Attheftp prompt, typehd sys and pres§Return] to change the
remote network directory. See Figure 6.14. The system response
shows the new directory.

6-14

Chapter 6

Using the Ethernet Interface

10. Attheftp prompt, typadir and pres§Return]
in the remote directory. See Figure 6.14.

Figure 6.14

Connect to Remote Subdirectory

to get a list of files

ftp>
ftp> chd sys

ftp>
ftp>
ftp> dir

288 CWD command ok

~

288 PORT command ok
158 Opening data conmection for dir -ea
Directory of

(138.131.132.134,1828) (B bytes).
. 13:51:12

Quner Last modified Attributes Sector Bytecount Hame

a.8 92/87/29 BB52 ------ wr F 578 hosts

A.8 92/87/29 AB52 ------ wr 1A 39 hosts.equiv
a.8 92/87/29 BB52 ------ wr 24 1836 inetdb
a.8 92/87/38 1127 ----- ewr E 188 lefd_147
a.8 92/87/29 1845 ------ wr 2B 134 miki

a.8 92/87/29 BB52 ------ wre 17 198 networks
a.8 92/87-38 1128 -—-—-———- wr C 80 password
a.a 92/87/29 BB52 ------ wr 28 556 protocols
a.a 92/87/29 8852 ----—-- wr 19 1488 services
a.8 92/87/29 BBSZ ------ wr 9 468 startinet

226 Transfer complete
796 bytes received in B.47 seconds (1.65 Kbytes/s)

ftp>
1:56 -CA -PR -LO +LF -LE +X0 -CT CD COM1 19208N81 PCBridge //////

uT18e
11. Attheftp prompt, typesend hosts.equiv. and presgReturn]
You receive status information confirming the file transfer. See
Figure 6.15.

Figure 6.15
FTP Send

@

ftp> send hosts.equiv

288 PORT command ok

158 Opening data commection for hosts.equiv (130.131.132.134,1834).

226 Transfer complete

42 bytes sent in B.B1 seconds (4.18 Kbytes/s)

ftp>

ftp>

ftp> dir

288 PORT command ok

158 Opening data conmection for dir -ea (138.131.132.134,1835) (@ bytes).
Directory of . 13:53:48

Last modified Attributes Sector Bytecount Name

~

Quner

.8 92/87/38 1353
226 Transfer complete
237 bytes received in B.13 seconds (1.78 Kbutes/s)

ftp>
1:58 -CA -PR -LO +LF -LE +X0 -CT CD COM1 192Z8@AN81 PCBridge <//////

ftp>

\\\\TTIBB

12. Attheftp prompt, typalir and pres§Return] . The remote
directory now contains the transferred file. See Figure 6.15.

39 hosts.equiv

6-15

Chapter 6

Using the Ethernet Interface

FTP Get Session
The following example shows how you might conduct an FTP get session.

Important: The followingftp get session is an example only. It
represents how one network is set up and we accomplished an FTP session.

For this example session, we continue the previous FTP send session and
retrieve the file we sent to a remote directory.

1. Attheftp prompt, typeget and presfReturn] . See Figure 6.16.

Figure 6.16
FTP Get

- N

ftp> get

(remote-file) hosts.equiv

(local-file) hosts.othernode

288 PORT command ok

158 Opening data conmection for hosts.equiv (136.131.132.134,1845) (39 bytes).
setting hosts.othernode to 39 bytes

226 Transfer complete

42 bytes received in B.B1 seconds (4.18 Kbytes/s)
ftp>

ftp> close

288 Goodbye

ftp>

fip> quit

§
§ list hosts.othernode
i

used for rcp/rsh (not supported)

\\\\TTTBB 2:83 -CA -PR -L0O +LF -LE +X0 -CT CD COM1 19288N81 PCBridge l/////

2. Atthe(remote-file) prompt, enter the name of the file that you
want to transfer from the remote host.

L H

3. Atthe(local-file) prompt, enter the name that you want to
assign the file on the control coprocessor. You get a listing of user
information confirming the transfer.

4. Attheftp prompt, typeclose and pres§Return] to close the
connection to the remote host. Theodbye line confirms the
termination of the connection.

5. Attheftp prompt, typeguit and pres§Return] to exit FTP. The
0OS-9%$ prompt appears.

6. Atthe$ prompt, typdist hosts.othernode and press
[Return] to view the contents of the file just received from the
remote system. It is the same as the file sent.

6-16

Using the 0S-9/Internet
TELNET Utility

Chapter 6

Using the Ethernet Interface

This utility provides user-interface communication to other nodes on the
Internet system. The TELNET utility provides the ability to log on to

remote systems using the control coprocessor and your screen as a terminal
connected to the remote host. See the OS-9 Internet Software Reference
Manual, publication 1771-6.4.11, for more information on the TELNET

utility and commands available.

The following examples show how you might conduct a TELNET session
Important: The following TELNET session is an example only.

It represents how one network is set up and how we accomplished a
TELNET session.

1. Atthe$ prompt, typeelnet and presfReturn] . See
Figure 6.17. This starts the interface totiieet protocol.

2. Atthetelnet prompt, typehelp and pres§Return] to get a list
of all the available TELNET commands. See Figure 6.17.

Figure 6.17
Starting TELNET and TELNET Help

y N

§

$ telnet

telnet? help

close close current conmection

display display operating parameters

mode try to enter line-by-line or character-at-a-time mode
open commect to a site

quit exit telnet

send transmit special characters (‘send 7' for more)
set set operating parameters ('set ?' for more)
status print status information

toggle togyle operating parameters ('toggle 7' for more)
capture log telnet session to a file

z fork a shell

$ fork a shell

7 print help information

help print help information

UT1a8 16:44 -CA -PR -LO -LF -LE +X0 -CT CD COM1 96B8N81 PCBridge

N /

3. Atthetelnet prompt, typeopen and pres§Return] to start a
terminal session. See Figure 6.18.

6-17

Chapter 6

Using the Ethernet Interface

Figure 6.18
TELNET Connection to Remote Network

telnet>

telnet> open

(to) group_2

Trying 138.131.132.135...Connected to group_2.
Escape cracter is '"1'.

capture closed.

08-9/68K UZ.4 Allen-Bradley Coprocessor - 683808 9Z/87-38 13:59:24
User name?: super

Password:

Process #24 logged on 92/838 13:59:34

Welcome?

Super:

Super:
Super:

\\\\\\?Tiﬁﬂ Z2:84 -CA -PR -LO +LF -LE +X0 -CT CD COM1 19288NB1 PCBridge <//////

4. Atthe(to) prompt, enter the name of the the remote host to which
you want to attach. For this example, the name of the remote host is
group_2 .

5. Login and enter the account password. The response shows
successful log in. See Figure 6.18.

6. AttheSuper: prompt of the remote host, tyde and press
[Return] to list the directory. See Figure 6.19.

Figure 6.19
Remote Network Directory

Super:
Super:
Super:
Super: dir

Directory of . 14:88:36
hosts hosts.equiv inetdb lef_147 miki
networks password protocols services startinet
temp
Super:
Super:
Super:
Super:
Super:

\\\fﬁfﬁﬁ Z2:86 -CA -PR -LO +LF -LE +X0 -CT CD COM1 19ZAANB1 PCBridge </////

6-18

Using the Internet Socket
Library in C Programs

Chapter 6

Using the Ethernet Interface

7. AttheSuper: prompt of the remote host, tydel host.equiv
and presgReturn] . The example deletes the file that was
transferred to the remote host in the previous FTP send session. See
Figure 6.20.

Figure 6.20
Telnet Delete File and Log Out

-~ N

Super:
Super:
Super: dir

Directory of . 14:81:52

hosts hosts.equiv inetdb led_147 networks
password protocols services startinet temp
Super: del hosts.equiv

Super:

Super:

Super: dir
Directory of . 14:81:59

hosts inetdb led_147 networks password
protocols services startinet temp

Super:

Super:

Super: logout
Connection closed by foreign host§

§

VTMB 2:87 -CA -PR -LO +LF -LE +X0 -CT CD COM1 192BBN81 PCBridge /

8. AttheSuper: prompt of the remote host, tydie and press
[Return] to list the directory contents. See Figure 6.20. The file
HOST.EQUIV is no longer listed in the directory.

9. AttheSuper: prompt of the remote host, tyjsgout and press
[Return] to log off.

You exited TELNET when the connection is closed and you returned to the
local OS-9% prompt.

Use socket-library C calls to write client/server applications involving
network data transfer. The OS-9/Internet socket library is based on the
BSD-UNIX socket model for interprocess communication. This is a
common method of writing client/server applications.

6-19

Chapter 6

Using the Ethernet Interface

Analogy to Client/Server Application

A simple analogy to the client/server application is the
time-and-temperature service that is provided by the local telephone
company. To acquire the time and temperature, you:

= |ook uptime and temperature in the telephone directory

» dial the number

= receive an announcement of the time and local temperature
= hang up the telephone

The following flow chart shows a client/server analogy to the
time-and-temperature operation.

Client Server
Purchase Phone Service Purchase Phone Service
socket () socket ()
Look up phone number Put phone number in book
gethostbyname () bind ()

Y \J

Buy equipment to announce time

Look up the extension and temp, connect it, set to auto
getservname () answer number
listen ()

'

Dial phone number and extension

If not busy announcing,

answer phone -
connect () accept ()
Y Y
Listen to the announcement _ Announce time
recv () B send ()
Y Y
Done—hangup Done—hangup
shutdown () shutdown ()
close () close ()
Wait for next call

6-20

Chapter 6

Using the Ethernet Interface

The following flow chart shows a client/server interface.

Client Program Server Program
socket()—creates a socket()—creates a
communication socket communication socket

' '

get host by name—looks up
server’s IP address in “hosts”
given hostname

bind()—ties a name/address
structure to socket

\j \J

get serv by name—looks up listen()—establishes socket as
“well-known servce number” a server, sets number simultaneous
in “services” given name connections allowed

i '

; : . ! t()—waits for client to establish
connect()—establishes connection | establish connection | 2°CeP
to server (which must already be - clc_mnectlon, I(zjreateks new_sofcket for &
waiting with accept ()) client use, old socket waits for next
connect ()
[-
Y v (see note)
data transfer and
send() or recv() or do client agree when done recv() or send()—transfer of data wait
“stuff” until done with service ™| and perform server “stuff’ for
next
Y Y client
close()—terminate existence of shutdown()—disallows
socket data path further transfers
l Y
exit()—done! c/ose()—termir]ate existence
of socket acquired from
accept()

. exit if we did fork() above
Note: fork() for multi-connect service '

Refer to the OS-9 Internet Software Reference Manual, publication
1771-6.4.11, Appendix B, for example programs. Each of the three
different examples provide client and server programs using TCP sockets.

6-21

Chapter 6

Using the Ethernet Interface

Using the INTERD
INTERCHANGE Daemon

6-22

INTERD is a PCCC INTERCHANGE server daemon that provides
communication between the control coprocessor, its attached PLC-5
processor, and a host computer running INTERCHANGE software via the
Ethernet connection of the coprocessor.

INTERD is included in revision 1.20 or later of the PCBridge software
(1771-PCB) and requires Series A Revision E (1.30) or later firmware in
the control coprocessor.

INTERCHANGE is an Allen-Bradley application-programming interface
(API) that allows easy, consistent programmatic access to control-system
information.

By installing the INTERD daemon on the control coprocessor, you have
the ability to do the following over the Ethernet network:

= run 6200 Series PLC-5 Programming Software on a host computer to
program or monitor a PLC-5 processor connected to the coprocessor.

= run an INTERCHANGE program on a host computer to access the data
table of the PLC-5 processor connected to the coprocessor.

= run an INTERCHANGE program on a host computer to access the TAG
table of the coprocessor.

= access the data table of the PLC-5 processor connected to the
coprocessor from a remote Ethernet PLC-5 processor by using the
message instructions.

Introduction to INTERCHANGE Access
to Coprocessor-Tagged Memory

You can route INTERCHANGE messages to the control coprocessor when
you give the coprocessor its own station number. You do this via the
CC_CFG utility. Any messages that the control coprocessor receives that
are not addressed to the coprocessor are routed to the PLC-5 processor if it
is connected.

INTERCHANGE accesses the TAG table of the control coprocessor using
the DTL_PCCC_DIRECT function call. You read or write tagged data by
issuing a PCCC typed read or write command of undefined type with an
element size of 1 byte.

Chapter 6

Using the Ethernet Interface

All external access to the control coprocessor’s user memory is through the
TAG table of the coprocessor. The TAG functions provide a way for you

to specify access to control-coprocessor memory. The memory of the
tagged area can be of any data type—e.g., char, short, float, etc.—or
combination of data types. Itis your responsibility to understand the

layout of the tagged memory. Transmission or reception of tagged
memory data is done as a “byte stream.” External devices can have
different memory structures—i.e., byte order, data sizes, etc. When
reading tagged data from the coprocessor, the external process must
accommodate the differences when interpreting the byte stream. Similarly,
when writing to the tagged area, the external process must generate a byte
stream to match that of the coprocessor tagged memory.

EXAMPLE Program of INTERCHANGE Access
to Coprocessor-Tagged Memory

The following example illustrates how to set up the tagged memory of the
coprocessor and access that memory over Ethernet using INTERCHANGE
software on the host computer.

In this example, we set up a tagged area defined by the structure CAR.
The TAG name “Car” points to the start of the CAR structure. The
memory allocated by the OS9 compiler for the CAR structure is:

Structure Offset Allocation

CAR -> 00 make (bits 31-24)
01 make (bits 23-16)
02 make (bits 15-8)
03 make (bits 7-0)
04 model
05 type
06 color
07 “pad” byte
08 year (bits 31-24)
09 year (bits 23-16)
10 year (bits 15-8)
1 year (bits 7-0)

Note the inclusion of a “pad” byte generated by the compiler. The pad
byte is necessary to makear start on an even addressed boundary. This
illustrates how imperative it is that you know the exact memory layout of
the tagged area.

The following example of a coprocessor program creates the Car TAG and
periodically increments the make, model and type elements of the
structure. In this example, the coprocessor is set up to be station 22 octal
(12h). To increase readability of the example, no error checking is done.

6-23

Chapter 6

Using the Ethernet Interface

#include <copro.h>
typedef struct
{
unsigned make;
char model;
char type;
char color;
unsigned year;
1CAR;

main(){
unsigned id; [* id for tag definition */
CAR car; [* car structure pointed to by tag */

CC_INIT(); [* init the coprocessor */
TAG_DEFINE (&id,&car,"Car”,sizeof(car), TG_MODIFY); /* define the tag */
car.make = car.model = car.type = car.color = car.year = 0; /* init data */

while (1) {
TAG_LOCK (id,CC_FOREVER); /* prevent concurrent access on tagged data */
car.make +=1; [* increment make */
car.model += 2; /* and model */
car.type += 3; /* an year */
TAG_UNLOCK (id,CC_FOREVER); /* allow access to tag */
sleep (1);} /* sleep for 1 second */
}

The INTERCHANGE host program does the following:

1. reads and displays the entire Car TAG

2. writes a 0x99 to only the color element of the Car TAG
3. reads and displays the entire Car TAG

4. writes a 0x88 to the color element and increments the year element of
the Car TAG

5. reads and displays the entire Car TAG

Note that the display routine takes the 4 bytes of the unsigned variables

and places them in a temporary union variable before storing them.

This—or another similar method—is necessary when the host requires that
data larger than a byte be on even-address boundaries but the data for those
variables in the byte stream are on odd-address boundaries.

6-24

#include "dtl.h”

#define HOSTNAME "copro2”

#define NL_ID 1

unsigned char pccc_color[] = {

0x12, /* DST - copro station address */

0x05, /* CTRL - packet type must be 5 for Interchange */

0x00, [* SRC - Source station filled in by NI */

0x00, /* LSAP - Set to O for local network */

0x0f, /* CMD - command for typed write */

0x00, /* STS - status byte */

0x01, 0x00, /* TNSW - L/H Transaction status word */

0x67, /* FNC - typed write function */

0x06, 0x00, /* OFF - Offset L/H to requested data 6 bytes */

0x01, 0x00, /*TT - Total transaction L/H 1 item */

0x00, 'C’;’a’,'r',0x00, /* Symbolic address (TAG) */

0x91, [* Type in next byte, size of 1 byte */

0x22, /* Undefined type */

0x99}; /* Data to be transmitted */
unsigned char pccc_col_year[] = {

0x12, /* DST - copro station address */

0x05, /* CTRL - packet type must be 5 for Interchange */

0x00, /* SRC - Source station filled in by NI */

0x00, /* LSAP - Set to O for local network */

0x0f, /* CMD - command for typed write */

0x00, /* STS - status byte */

0x02, 0x00, /* TNSW - L/H Transaction status word */

0x67, /* ENC - typed write function */

0x06, 0x00, /* OFF - Offset L/H to requested data 6 bytes */

0x06, 0x00, [*TT - Total transaction L/H 6 items */

0x00, 'C’;’a’,'r',0x00, [* Symbolic address (TAG) */

0x99, /* Type in next byte, size in following byte */

0x09, /* Type is array */

0x03, /* of 8 bytes */

0x91, [* Type in next byte, size of 1 byte */

0x22, /* Undefined type */

0x88, 0xff, 0x00, 0x00, 0x00, 0x00}; /* Data to be transmitted */
unsigned char pccc_read[] = {

0x12, /* DST - copro station address */

0x05, /* CTRL - packet type must be 5 for Interchange */

0x00, /* SRC - Source station filled in by NI */

0x00, /* LSAP - Set to O for local network */

0x0f, /* CMD - command for typed read */

0x00, /* STS - status byte */

0x03, 0x00, /* TNSW - L/H Transaction status word */

0x68, [* FNC - typed read function */

0x00, 0x00, /* OFF - Offset L/H to requested data 0 bytes */

0x0C, 0x00, [*TT - Total transaction L/H 12 items */

0x00, 'C’,’a’,'r',0x00, [* Symbolic address (TAG) */

0x0C, 0x00}; /*SIZ - Size L/H same as TT 12 items */

Chapter 6

Using the Ethernet Interface

6-25

Chapter 6

Using the Ethernet Interface

unsigned char pccc_rpl[275];

void main(int argc, char** argv){

unsigned long iostat; [* function completion value */
unsigned long rpl_siz; /* size of pccc reply */

DTSA BKPLN addr; /* structured address */
DTL_INIT(1); [* Initialize the Data Table Library */
DTL_C_CONNECT(NI_ID, HOSTNAME, 0); /* Connect */

addr.atype = DTSA_TYP_BKPLN;
addr.ni_id = NI_ID;
rpl_siz = sizeof (pccc_rpl); [* size of response buffer */

DTL_PCCC_DIRECT_W ((DTSA_TYPE *) &addr, pccc_read, sizeof (pccc_read),

pccc_rpl, &rpl_siz, 0, 0, &iostat, 60000); /* do typed read */
display_tag(); /* show the result of the read */
rpl_siz = sizeof (pccc_rpl); [* size of response buffer */

DTL_PCCC_DIRECT_W ((DTSA_TYPE *) &addr, pccc_color, sizeof (pccc_color),
pccc_rpl, &rpl_siz, 0, 0, &iostat, 60000); /* typed write to color 0x99 */

rpl_siz = sizeof (pccc_rpl); [* size of response buffer */

DTL_PCCC_DIRECT_W ((DTSA_TYPE *) &addr, pccc_read, sizeof (pccc_read),
pccc_rpl, &rpl_siz, 0, 0, &iostat, 60000); /* do typed read */

display_tag(); /* show the result of the read - note color = 0x99*/
rpl_siz = sizeof (pccc_rpl); [* size of response buffer */

DTL_PCCC_DIRECT_W ((DTSA_TYPE *) &addr, pccc_col_year, sizeof (pccc_col_year),
pccc_rpl, &rpl_siz, 0, 0, &iostat, 60000); /* write to color and year */

rpl_siz = sizeof (pccc_rpl); [* size of response buffer */

DTL_PCCC_DIRECT_W ((DTSA_TYPE *) &addr, pccc_read, sizeof (pccc_read),
pccc_rpl, &rpl_siz, 0, 0, &iostat, 60000); /* do typed read */

display_tag(); [* show the result of the read - note color = 0x99 */}

display_tag (){

/* since the pccc "byte stream” from the coprocessor might put unsigned
variables on uneven address boundries we move them to a temporary union
variable before storing them */

6-26

Chapter 6

Using the Ethernet Interface

union
{
unsigned tmp;
unsigned char c[4];

ty;

unsigned make, year,;
unsigned char model, type, color;

u.c[0] = pccc_rpl[13]; /* get the make from the reply buffer */
u.c[1] = pccc_rpl[14]; [* and put it in the temp buffer */
u.c[2] = pccc_rpl[15];

u.c[3] = pccc_rpl[16];

make = u.tmp; [* store make in make variable */
model = pccc_rpl[17]; /* get model from reply buffer */
type = pccc_rpl[18]; /* also type */

color = pccc_rpl[19]; /* as well as color */

u.c[0] = pccc_rpl[21]; [* get the year from the reply buffer (skip */
u.c[1] = pccc_rpl[22]; /* over pad byte at offset [21]) and put it */

u.c[2] = pccc_rpl[23]; /* in the temp buffer */

u.c[3] = pccc_rpl[24];

year = u.tmp; [* store year in year variable */

u.tmp +=1; /* increment year in tmp */
pccc_col_year[25] = u.c[0]; [* move it to write data in pccc buffer */

pccc_col_year[26] = u.c[1];

pccc_col_year[27] = u.c[2];

pccc_col_year[28] = u.c[3];

printf ("make = %X model = %X type = %X color = %X year = %X\n”,
make,model,type,color,year); [* display the "Car” tag */ }

Using the SNMPD Daemon SNMPD is a daemon that provides Simple Network Management Protocol
(SNMP) services between the control coprocessor and a host computer.
This daemon supports MIB-1 variables. After installing the SNMPD
daemon on the control coprocessor, you have the ability to:

= allow 6200 Series PLC-5 Programming Software to identify the
coprocessor on the Ethernet network using the “WHQO" function.

= monitor MIB-1 variables from a host computer running SNMP-
monitoring software.

6-27

Using the Serial Ports

Chapter Ob]ectives This chapter provides information for setting up communication with the
serial ports on both the control coprocessor main module and the serial

expander module.
Introduction

For information on: See page:
Setting up communication 7-2 |
parameters Installing the Control Using the Ethernet
Referencing 0S-9 serial port 7-4 Coprocessor Interface
device names ‘ ‘
Connecting to the serial port 7-4 Getting Started with the Using the Serial Ports
- - Control Coprocessor
Using a serial port for ASCII 7-5 |
communication |
: . Using the Programming Interpreting Fault
Using a serial port for 7-10 : ;
RS-485 communication Environment Codes and Displays
Using a serial port for 7-17
RS-422 communication Developing Programs

You can use the serial ports to connect to a device that sends and receives
ASCII and other serial communication.

With Series A Revision D (1.20) and later of the firmware, the serial port
drivers include Data Carrier Detect functionss(_ dcon and_ss_dcoff)
and they also support RS-485 communications. The serial port on the
expander module (1771-DXPS) handles reception of 7-bit even-parity
communications. For more information about these functions, see the
0S-9 C Language User Manual, publication 1771-6.5.104.

The serial port buffers also increased with Series A Revision D (1.20)

of the firmware. The input buffers on the coprocessor and the expander
increased from 80 to 128 bytes. The output buffers on the coprocessor
increased from 140 to 256 bytes. The output buffers were already 256
bytes on the expander. These buffers are fixed, and they cannot be
modified through user programs.

You use the PCBridge software to set up communication parameters for
your personal computer. See Chapter 3.

Chapter 7

Using the Serial Ports

Setting Up Communication
Parameters

Prior to Series A Revision E (1.30) of the firmware, all the COMM ports

on the control coprocessor and serial expander were initialized at the
factory for connection to a programming terminal. These initial settings
would process control-character sequences, pause characters, and program
abort sequences. If you have a firmware release earlier than Series A
Revision E (1.30) and you want to connect a COMM port to a device other
than a terminal, you must reconfigure the port.

The 9-pin serial port COMM 0, used for configuring the coprocessor,
retains the factory settings for connection to a programming terminal.

In Series A Revision E (1.30) of the firmware and later, however,
COMM1, COMM2, and COMM3 have all serial-port settings prepared
for raw binary data transfers. For example, the XON and XOFF settings
are set to OxFF in order to turn of software and hardware handshaking;
this setting allows for proper RS-485 communication.

The exact changes made to the serial port settings are listed in the
following table.

Settings Prior to Series A Settings in Series A

Revision E (1.30) Revision E (1.30) and Later
noupc noupc
bsb nobsb

bsl nobsl
echo noecho

If nolf
null=0 null=0
nopause nopause
pag=24 pag=0
bsp=08 bsp=00
del=18 del=00
eor=0D eor=00
eof=1B eof=00
reprint=04 reprint=00
dup=01 dup=00
psc=17 psc=00
abort=03 abort=00
quit=05 quit=00
bse=08 bse=00
bell=07 bell=00
type=00 type=00
baud=9600 baud=9600
xon=11 xon=FF
xoff=13 xoff=FF
tabc=09 tabc=00
tabs=4 tabs=0

Chapter 7

Using the Serial Ports

you make in applications never terminates. Use the raw read()

c ATTENTION: Witheor andeof setto 0, any readin() call

call to read from the serial ports.

Use this mode:

Use the 0OS-9 system management utilitiesde andxmode to set
up or view the communication parameters for the control-coprocessor

serial ports.

To display or:

tmode temporarily change the operating parameters of the current terminal session; tmode affects
open paths and not the device descriptor; when the path is closed, the changes are lost
xmode change the initialization parameters of any control coprocessor serial port; these changes will be

7-4) to make changes persist through reset/power cycles.

inherited by any process that subsequently opens the path; the changes persist as long as the
control coprocessor is running (even when paths to the device are repetitively opened and
closed; xmode updates the device descriptor for the port; use the CC_VALCOMM utility (page

If you have an application that was designed prior to release 1.3 and you
require the original settings of the serial port COMML1, for example,
includexmode commands in the startup file with the following argument:

xmode /t1 normal

This returns the serial-port settings to the settings used before firmware
release 1.30. See the next section for a description of CC_VALCOMM, a
utility that saves the changes made aftexraode operation and retains

the changes over power cycles.

See Figure 7.1 for the default settingstfoode andxmode.

Figure 7.1
Set Up Communication Parameters

=

S tmode

/term

noupc bsb bgl echo If null=B nopause pag=24 bsp=-B8 del=18 eor=BD
eof =1B reprint=04 dup=B1 psc=17 abort=B3 quit=B5 bse=B8 bell=07
type=08 baud=9680 xon=11 xoff=13 tabc=B9 tabs=4

$ xmode /t1

noupc bsb bzl echo If null=B wopause pag=24 bsp=8B8 del=1B eor=BD
eof =1B reprint=B4 dup=B1 psc=17 abort=B3 quit=@5 bse=B8 bell=B7
type=08 baud=9680 xon=11 xoff=13 tabc=B9 tabs=4

]

g xmode /t1 baud=19288

$ xmode /t1

noupc bsb bsl echo If null=B wopause pag=24 bsp=-88 del=18 eor=BD

eof =1B reprint=04 dup=81 psc=17 abort=B3 quit=B5 bse=B8 bell=07
type=B8 baud=192688 xonw=11 xoff=13 tabc=B9 tabs-4

~

§
\\\\\\‘ UT188 16:34 -CA -PR -LO -LF -LE +X0 -CT CD COM1 096@BN81 PCBridge

7-3

Chapter 7

Using the Serial Ports

See the OS-9 Operating System User Manual, publica@th-6.5.102,
for information on the scope and lifetimetofode andxmode changes.

Using the CC_VALCOMM Utility

Use the CC_VALCOMM utility to makemode changes persist through
reset and power cycles. This utility validates the device descriptor that
was changed by the OS«hode utility.

Syntax for the CC_VALCOMM utility is:

cc_valcomm {<opts>}

Function: Validate SCF descriptor for comm ports

Options: -comm=<num> Validate descriptor for comm port (0-3)
-comm=* Validate descriptor for all comm ports

The following example sequence sets the COMML1 port (/t1) for 19200
baud and hardware handshaking enabled .
$ xmode /t1 baud=19200 xon=0 xoff=0

$ cc_valcomm -comm=1

Hardware handshaking is enabled when the valuesfisxon are
both 0. The changes persist through reset and power cycles.

Referencing 0S-9 Serial Use the OS-9 device name as shown in the table below to reference the
Port Device Names serial ports.

Module Port Label 08-9 Device Name

COMMO Jterm

COMM1 Y

COMM2 It

COMM3 3
Connecting to the The serial ports use a data-terminal equipment (DTE) setup. Pin 2 is
Serial Port transmit out. Pin 3 is receive in. Pin 7 is ground. See Appendix C for

information on cable connections.

7-4

Chapter 7

Using the Serial Ports

Using a Serial Port for ASCII You can use the serial ports for ASCII and other serial communication.
and Other Serial Examples of ASCII peripheral devices that you can use are:
Communication » ASCII terminals

= bar-code readers

= Allen-Bradley Dataliner
= weigh scales

» printers

Accessing a Port

When you use a serial port for ASCII and other serial communication, use
standard C library calls. You can use C calls such as:

= getc()
= read()
= write()

Your C program can get and change port parameters using the OS-9 library
calls _gs_opt() and _ss_opt().

See the 0S-9 C User Manual, publication 1771-6.5.104, for more
information on C library calls.

Example Program

The following program sets up the COMM2 port (/t2) with the proper
parameters for receiving data from a bar-code reader. The program:

= clears the input buffer on the COMM2 port

= |oops forever, waiting for carriage-return-terminated lines
of ASCII characters indicating that a bar code has been read

= places bar-code data in a buffer

= calls a subroutine to handle decision-making (based
on the content of the bar code)

7-5

Chapter 7

Using the Serial Ports

I' * * * * *

* barcode.c BarCode Reader Interface Program

* * * *

* LANGUAGE: Microware C, using PCBridge release 1.4 or later

* * * *kkkkkkkkkkkkk *% *kkkkkkkk * *% *

* TARGET SYSTEM AND VERSION:

* *kkk * * *

* 0S-9/68000 release 2.4 or later, on Allen-Bradley Control Coprocessor
* with Ethernet and Internet Support Package (ISP)

*

* REVISION LOG:

* *

Date By Description

*
* 31-JUL-92 DER Initial issue for User’'s Manual Example

* * *

* REFERENCES:

* *% *% * F*kkkkkkkkkk *% * * *kkkkkkkkkkkkk *% *

Data Structures: see C:\\OS9C\DEFS*.h
see #include directives below for list
Source File: see C:\OS9C\EXAMPLES\barcode.c
Linking Libraries: see C:\OS9C\LIB\libs for list
Compile Commands: see C:\\PCBRIDGE\pcbcc.bat
“$ pcbcc barcode.c”, then
use PCBridge to move executable
module to Copro execution directory
Executable Files: see C:\OS9C\EXAMPLES\barcode
User's Manuals: see Allen-Bradley Publication 1771-6.5.95,
“1771 Control Coprocessor User Manual”,
and various Microware user’'s manuals

* *

L I S

* USAGE:
The user runs this example program from the OS-9 shell prompt ($). This program
displays the barcode read, then passes control to a user-developed subroutine
for handling the decision-making part of the process. A simple example is
provided. A typical barcode application sets up data in data modules upon a
successful read, rather than printing to the screen. Modify the code here by
eliminating the “printf()” calls and adding calls to link to a data module or
write to a RAM-disk file using your barcode data.
EXAMPLES:
$ barcode <cr>
Waiting for a read...
Tag: ST0ZZ9ZZ read...
This is a Twinsburg product.
Waiting for a read...
Tag: SD1Z279ZZ read...
This is a Dublin product.
Waiting for a read... <ctrl><E> Error 000:002

* *% *% * *kkkkkkkkkkkkk *% *% F*kkdkkkkkkkkkk *% *

* INPUTS:

* 0% 3k 3k 3k 3k 3k % X X X X X X X %

port “/t2": receive barcode reader characters. This program is set
up for a reader that just sends the barcode characters followed by
a carriage return. IT DOES NOT HANDLE STANDARD BARCODE READER PROTOCOLS

* X X * X

* OUTPUTS:

* Screen messages as in example above.

7-6

* * *

* FUNCTIONS CALLED BY THIS PROGRAM:

* *

* EXTERNAL/LIBRARY FUNCTIONS:

*

* _gs_opt() * get setup of serial port from OS-9

* _gs_rdy() * get number of characters waiting in input buffer

* ss enrts() *turn onthe RTS line on the serial port

* _ss opt() * change setup of serial port

* close() * close path to serial port

*exit() * abort program, exiting with status

* memcpy() * copy bar code data from input buffer to global data
* open() * open a path to the bar code reader input port

* printf() * print messages to terminal screen (stdout)

* read() * get characters from input port

* readIn() * get <cr>-terminated line of characters from port

*

* FUNCTIONS (defined in this file):

* NONE

* PROGRAMS WHICH CALL THIS PROGRAM:

* This program is started by the user from the OS-9 shell “$” prompt
* command line. It loops until terminated by a user <ctrl><C> or

*

<ctrl><E>.

kkkkkkkk dkkkk ok ok ok ok ok kkk xxxxxxxxxxx/
#include <stdio.h>

#include <errno.h>

#include <strings.h>

#include <modes.h>

#include <sgstat.h>

#include <ctype.h>

#define BARC_PORT “It2”
/** Makes it easy to change. Even easier to change ***
x (but harder to program) is to read port name ~ *
*** from command line using argc, argv. *x[
#define BARC_BUF_SIZE 60
/** Not many single line readers can fit that ***
*** many characters within the scan window! **/

main ()
int path; /* OS-9 path number for barcode port ~ */
int sts; /* return status of any given call... */
int recd_chars; /* number of chars gotten from barc. */
struct sgbuf opts_buffer; /* place to store OS-9 path options */
char barc_buf[BARC_BUF_SIZE]; /* data buffer for barcode */
int mfg_loc; /* Manufacturing Location from barcode */
int c,i,n; /*Used to bit-bucket garbage from port */
while (1)

/* Open a path to the serial input from the barcode reader */
path = open (BARC_PORT, (S_IREAD));

if (path<0)

{

[* failure to open path to bar code reader port */
printf (“BARCODE::Failed to open path to serial port\n”);
exit (errno);

Chapter 7

Using the Serial Ports

7-7

Chapter 7

Using the Serial Ports

/* Now set up the options on the port for:
No Echo
No Pause
Backspace Char = 0x7F (DEL)
EOF Char = Ox1A (ctrl-z)
7 data bits, even parity bit, 2 stop bits */

/* Get the options on the path, change the ones which need to be
changed, and then send the option buffer back to the path
descriptor */

sts = _gs_opt (path, &opts_buffer);

if (sts==-1)

printf (“BARCODE::Can't get port options'\n”);
exit (errno);

opts_buffer.sg_pause = 0x00; /* No pause */
opts_buffer.sg_echo = 0x00; /* No echo */
opts_buffer.sg_bspch = Ox7f; /* DEL for bksp */
opts_buffer.sg_eofch = Oxla; /* <ctrl><z> for EOF */

opts_buffer.sg_parity = 0x27; /* 2 stop, 7 data, even parity */
sts = _ss_opt (path, &opts_buffer);

if (sts==-1)

printf (“BARCODE::Can't set port options!\n”);
exit (errno);

}

/* Set the RTS line to the Enabled state... */

sts = _ss_enrts (path);

/* Now flush the port of any garbage input from power-up. Ditch it
all to the bit bucket.... */

sts =_gs_rdy (path); /* number of chars waiting at port... */

for (1=0;i<sts;i++)
read (path, &c, 1); /* throw each char. away */

/* From here on out, we have the port; get whatever comes in from the
bar code reader and parse it for info; then go to the appropriate
code to distribute the data received. */

while (1)

/* Read a “line” of characters from the barcode reader.
Since the reader terminates its send with a <cr>, the
readIn() function will do the job just fine! */
printf (“Waiting for a read...\n");
recd_chars = readin (path, barc_buf, BARC_BUF_SIZE);
if (recd_chars <=0)

/* end of file, or some other error...
go back and grab port again */
printf (“BARCODE::Bar Code Port EOF or Error.\n");
printf (“ Attempting to reopen port...\n");
close (path);
goto reopen;

[* The last character in the buffer is a carriage return:
overwrite it with a 0 to terminate the string... */
barc_buf[recd_chars-1] = 0;
/* Now handle the received barcode. If some unrecoverable
error, exit the program and tell why... */
printf (“Tag: %s read...\n”, barc_buf);
sts = handle_barcode (barc_buf);

7-8

Chapter 7

Using the Serial Ports

if (sts!=0)

{
printf (“BARCODE::Error parsing barcode!\n”);
exit (sts);

[* Loop back to the “readIn()” to get the next tag being read */

}
/* Loop back to the “open()” to try again to open path... */
reopen:

}

int handle_barcode (buffer)
char *buffer;

if ((buffer[0] I="S") || (!(isalpha (buffer[1]))))
{

printf (“BARCODE::Invalid location character in barcode.\n");
return (0x0101);

switch (buffer[1])
{

case 'D”:
printf (“ This is a Dublin product.\n”);
break;

case 'T":
printf (“ This is a Twinsburg product.\n");
break;

default:
printf (“ | have no idea where this product came from!\n”);
break;

return (0);

Chapter 7

Using the Serial Ports

Using a Serial Port for
RS-485 Communication

7-10

The control coprocessor and the expander support RS-485
communications. The modules have the necessary hardware and
low-level drivers on COMM1, COMM2, and COMMS3. To communicate
on this network:

1.

Set up the hardware.

Set the switches as shown on the side label of the coprocessor or
serial expander. Connect the signal pair of wires to pins 11 and 25.

Within the control coprocessor, pin 7 is connected to the logic
common of the transceiver and pin 1 is connected to chassis ground.
An isolated power supply powers the module’s transceiver, so there
is no internal connection of the logic common to the chassis ground.

For more information, see appendix C. You can also refer to the
EIA-485 standard.

The coprocessor and expander use a bidirectional transceiver. The
sense of the voltages appearing across the RS-485 outputs:

= for a binary 0 (SPACE or ON) state, pin 11 is positive with respect
to pin 25

= for a binary 1 (MARK or OFF) state, pin 11 is negative with
respect to pin 25

You can enable and disable the transmitter (under software control)
to allow it to function in typical RS-485 networks where multiple
transmitters are present. You cannot disable the receiver.

The RS-485 transmitters default to transmit at power-up. If the
coprocessor is connected in a multiple transmitter network, you
should include a call (in the listing above) to a program that will
disable the transmitter to prevent the coprocessor from disrupting
the network.

Use the port.

Follow this order of events when writing and reading over an
RS-485 network:

a. Make sure that the input buffer is empty.
b. Turn the transmitter on.

c. Write the data.

Chapter 7

Using the Serial Ports

d. Use gs_rdy() to verify that the data coming into the input
buffer is the same as the data that was transmitted.

e. After all the data is transmitted, turn the transmitter off.
f. Clear the input buffer.

g. Wait for new data to come into the input buffer.

h. Read the new data in the input buffer.

or use the sample code on page 7-12.

There may be many transmitters and receivers connected together on
an RS-485 network. If there is more than one transmitter on your
network, disable the transmitter when the coprocessor is not
transmitting and include collision detection. Use enrts() to

disable the transmitter; uses_dsrts() to enable the transmitter.

You cannot disable the receiver. This means that the control
coprocessor and serial expander receive all data that is transmitted
and store that data in the input buffer. Make sure the input buffer
does not overflow; if it does overflow, the buffer is locked until you
execute an OS-@einiz andiniz command. Use theys_rdy()
function to determine how many characters are in the input buffer.

Use the input buffer to verify that all of the data was transmitted
before turning the transmitter off.

7-11

Chapter 7

Using the Serial Ports

Example Code for RS-485 Communication

*init_485.c
* PURPOSE: Initialize the coprocessor’s serial port for generic serial

* communication using RS-485.

* REVISION LOG: 4/12/94 Original release of program

* 6/30/94 Turned off psc character

* USAGE: This function initializes the serial port properly for doing

* generic RS-485 communication to a coprocessor serial port. The
* function is passed the path of the port. This function then

* turns off all the default terminal settings that may adversely

* effect communications later on. A 0 is returned upon success and
* a -1 if there was a problem. Check the global variable errno

* for the error code reported.

* SYNOPSIS intinit_485(path)

* int path; - Path number from opened port

* EXAMPLE:

* path = open(*/t1”, (S_IREAD | S_IWRITE));

* status = init_485(path);

* if (status == -1)

* exit();

[* system include files */
#include <stdio.h>
#include <sgstat.h>

int init_485(path)

int path;
{
char buff; /* Character buffer */
int status; [* Status variable */
int size; /* Size of leftover stuff in input buffer */
struct sgbuf opts; * Buffer for path descriptor information */

[*** Get the current options ***/
if ((status = _gs_opt(path, &opts)) == -1)

{
fprintf(stderr, “**** ERROR on getting port options! ***\n");
return(-1);
}
/*** Set the options. This section is not needed with firmaware rel. A/E and later***/
opts.sg_pause = 0; /* Screen pause to off*/
opts.sg_psch = 0; /* No pause character */
opts.sg_bspch = 0; /* No backspace character */
opts.sg_dinch = 0; /* No delete line character */
opts.sg_rinch = 0; /* No reprint line character */
opts.sg_dulnch = 0; /* No duplicate last line character */
opts.sg_tabcr = 0; /* No tab character */
opts.sg_echo = 0; /* Echo off */
opts.sg_eorch = 0; /* Ignore end of record */
opts.sg_eofch = 0; /* Ignore end of file */
opts.sg_kbach = 0; /* Keyboard abort off - default = CTRL-E */
opts.sg_kbich = 0; /* Keyboard quit off - default = CTRL-C */
opts.sg_xon = Oxff; /* XON turned off, Oxffis special code for*/

opts.sg_xoff = Oxff; /* copro RS485, it will not interpret Oxff */
opts.sg_parity = 0x00; /* No Parity, 8 Bits, 1 Stop Bit, See below */
opts.sg_baud = 0xOe; /* Baud rate at 9600, See below

7-12

Chapter 7

Using the Serial Ports

* The sg_parity is a bitfield of 8 bits.

* Bits 0 and 1, indicate parity. 00 = no parity

* 01 = odd parity

* 11 = even parity

* Bits 2 and 3, indicate bits/character. 00 = 8 bits/char
* 01 = 7 bits/char

* 10 = 6 bits/char

* 11 =5 bits/char

* Bits 4 and 5, indicate stop bits. 00 = 1 stop bit

* 01 =1 1/2 stop bits

* 10 = 2 stop hits

* Bits 6 and 7 are reserved.
* The sg_baud is the baud rate variable (one byte field).

* 0 =50 baud 6 = 600 baud C = 4800 baud

* 1=75baud 7 = 1200 baud D = 7200 baud

* 2 =110 baud 8 = 1800 baud E = 9600 baud

* 3=134.5baud 9 = 2000 baud F =19200 baud
* 4 =150 baud A = 2400 baud 10 = 38400 baud
* 5=300 baud B = 3600 baud FF = external

[*** Set the options ***/

if ((status = _ss_opt(path, &opts)) == -1)

{
fprintf(stderr, “**** ERROR on setting port options! ***\n");
return(-1);

}

[*** Make sure transmitter is off ***/

if ((status = _ss_enrts(path)) == -1)

{
fprintf(stderr, “**** ERROR on disabling transmitter! ***\n");
return(-1);

}

[*** Make sure buffer is empty ***/
if ((size = _gs_rdy(path)) I=-1) /* Is it empty? */
{
while (size--)
if ((status = read(path, &buff, 1)) ==-1) /* Clear it out */
{
fprintf(stderr, “**** ERROR reading input buffer! ***\n");
return(-1);
}
}
return(0); /* Everything ok */
} /* End of function */
/
*read_485.c
* PURPOSE: Read characters from a serial port configured for RS-485.

* REVISION LOG: 4/12/94 Original release of program

* USAGE: This function reads characters from a port configured for RS-485.
* Because RS-485 reads are no different than a normal read()

* function, this read_485 function merely makes a normal read()

* call. This function is only included to pair with the write_485()

* function. The write_485() function is quite different than a

* normal write() function.

* Function returns the number of bytes actually read. A -1is

* returned if an error occurs. The error code is placed in the

* variable 'errno’.

7-13

Chapter 7

Using the Serial Ports

* NOTE: Always use a _gs_rdy() call to make sure there are
* is enough data to read in the input buffer before making
* this read call. Otherwise the function will appear to
* 'hang’, because it is waiting for the number of characters
* it was told to read.
* SYNOPSIS int read_485(path, buffer, count)
* int path; - Path number from opened port
* char *buffer; - Pointer to buffer for read
* int count; - minimum size of buffer
* EXAMPLE: int path;
* char in_data[10];
* intcnt = 5;
* path = open(*/t1”, (S_IREAD | S_IWRITE));
* init_485(path);
* status = read_485(path, in_data, cnt)
* if (status == -1)
* exit();
/
int read_485(path, buffer, count, timeout)
int path;
char *buffer;
int count;
int timeout;
{
int status;

int tmp_count=0;

/*** Make sure there is enough data in input buffer before reading ***/

while (((tmp_count = _gs_rdy(path)) < count) && timeout--)

[*** Ooops, timeout. No data. Returning. ***/

if (timeout == -1)

{
fprintf(stderr, “**** ERROR timeout in read_485() function! ***\n”);
return(-1);

}

[*** Do the read since there is data there ***/

status = read(path, buffer, count);

return(status);

*write_485.c
* PURPOSE: Write characters to a serial port configured for RS-485.

* REVISION LOG: 4/12/94 Original release of program

* USAGE: This function writes characters to a port configured for RS-485.
* Because doing serial write commands over RS-485 requires special
* techniques to complete the write, this function was created to

* take care of the details of transmitter control and the clearing

* of the input buffer.

* Function returns the number of bytes actually written. A -1 is

* returned if an error occurs. The error code is placed in the

* variable 'errno’. The function will no return until all the

* characters are physically transmitted out of the port.

* SYNOPSIS int write_485(path, buffer, count)

* int path; - Path number from opened port

* char *buffer; - Pointer to write buffer

* int count; - minimum size of buffer

7-14

Chapter 7

Using the Serial Ports

* EXAMPLE: int path;

* char out_data[3];

* intcnt = 3;

* path = open(“/t1”, (S_IREAD | S_IWRITE));
* init_485(path);

* status = write_485(path, out_data, cnt)

* if (status == -1)

* exit();

int write_485(path, buffer, count)
int path;
char *buffer;
int count;
{
int tmp_count; /* Temporary count variable */
int status; [* Status variable */
int size; [* Size of leftover stuff in input buffer */
int watchdog; /* Watchdog counter variable */
char tmp_buff[256]; /* Temporary buffer to clear input port */
char buff; [* Character buffer */
int sent; /* Actual number of characters sent */
[*** Make sure buffer is empty ***/
if ((size = _gs_rdy(path)) !=-1) /* Is it empty? */
{
while (size--)
if ((status = read(path, &buff, 1)) ==-1) /* Clear it out */
{
fprintf(stderr, “**** ERROR reading input buffer! ***\n");
return(-1);
}
}

[*** Enable the transmitter ***/
if ((status = _ss_dsrts(path)) == -1)
{
fprintf(stderr, “**** ERROR turning on transmitter ***\n");
return(-1);
}
/*** Send the data ***/
if ((sent = write(path, buffer, count)) == -1)
{
fprintf(stderr, “**** ERROR writing data ***\n");
return(-1);
}
[*** \Watch the data going out. When the input buffer has the same ***/
[*** amount as sent, then the transmitter can be turned off ***/
tmp_count = 0;
watchdog = 50000; /* This is worst case, it may be reduced based */
/* on baud rate and number of characters sent. */
while ((tmp_count < sent) && watchdog--)
tmp_count = _gs_rdy(path);

7-15

Chapter 7

Using the Serial Ports

/*** Report that watchdog timed out. All characters not sent in time ***/
if (watchdog == -1)
{
if (tmp_count > 0¥
if ((status = read(path, tmp_buff, tmp_count)) == -1)
{
fprintf(stderr, “**** ERROR flushing input buffer ***\n");
return(-1);
}
}

fprintf(stderr, “**** ERROR transmitting all characters - timeout ***\n");
if (tmp_count != sent
fprintf(stderr, “**** ERROR flushing buffer not equal to characters sent ***\n");
return(-1);
}
[*** Disable the transmitter ***/
if ((status = _ss_enrts(path)) == -1)
{
fprintf(stderr, “**** ERROR turning off the transmitter ***\n");
return(-1);
}
/** Flush the echo from the input buffer ***/
if ((status = read(path, tmp_buff, tmp_count)) == -1)
{
fprintf(stderr, “**** ERROR flushing input buffer ***\n");
return(-1);
}
return(sent); /* Return the number of bytes sent */
} /* End of function */
#include <modes.h>
main(argc, argv)
int argc;
char *argv(];
{
int status;
int x=5;
int time=0;
int path;
char output[20];
char input[25];
int timeout;
strepy(output, “abcdefghijkimnopq™);
X = atoi(argv[2]);
timeout = atoi(argv[3]);
path = open (argv[1], (S_IREAD | S_IWRITE));
init_485(path);
while(x--){
write_485(path, output, 17);
read_485(path, input, 22, timeout);
printf (“Received --> %s\n”, input);
tsleep(5);
}
}

7-16

Using a Serial Port for
RS-422 Communication

Chapter 7

Using the Serial Ports

Although the control coprocessor and expander are able to communicate
successfully with RS-422 devices, the RS-422 that the control coprocessor
and the expander support is not true RS-422 communication. True RS-422
communication can go to 1,200 meters (3,937 ft) at the coprocessor’s
maximum baud rate of 19.2 kbps; the coprocessor can only go a distance
of 200 ft at that rate.

True RS-422 can go long distances because it uses a balanced (differential)
driver and receiver with a balanced wiring pair—i.e., a pair of wires in

which neither the signal nor the signal-return line is connected to the
ground—which makes it highly immune to common-mode noise, as well

as because it uses a fast rise time. The coprocessor and expander use an
unbalanced—single-ended—configuration where the signal-return line is
connected to the ground, and the rise time is slower. A balanced
transmitter/receiver can be connected to and communicate with an
unbalanced transmitter/receiver as long as the maximum cable length is
reduced to that of the unbalanced specification—in this case, 200 ft.

7-17

Chapter Objectives

Serial Expander Module

ASCII Display

Chapter .

Interpreting Fault Codes and Displays

This chapter provides information on the status of the main module and the
serial expander module. The LEDs on the module front panel indicate
status. On the serial expander module, the user can identify faults on the

ASCII display.
. . Introduction
For information on: See page:
Serial expander module 8-1
fault display Installing the Control Using the Ethernet
Status for LEDs 8-2 Coprocessor Interface
Getting Started with the Using the Serial Ports

Control Coprocessor

Using the Programming
Environment

Interpreting Fault
Codes and Displays

Developing Programs

The ASCII display on the serial expander module shows user-selected
characters. You can configure the display using the control-coprocessor
CC_DISPLAY functions that are explained in Chapter 5.

/VRESET
ASCII ‘
Display \m

comM 2 @

comM3 @

124541

Chapter 8

Interpreting Fault Codes and Displays

Status for LEDs
O BATT @
cPU @ 1
COMM 0 @
COMM 1 @

K RESET

g

comz@
coma@

8-2

The following tables provide information for the LEDs on the
control-coprocessor main module and the serial expander module.

LEDs on the Main Module
LED Color Indication
cPU green valid processor cycles are occurring
red a fault condition
green receiving data
COMMO and COMM1 od transmiting data
(except RS-485)® r ransmiting
off idle
solid green idle

COMM1 (RS-485 only)®

flickering green

receiving data

off

transmitting data

BATT

off

good battery

red

replace battery (or no battery installed)

® When nothing is attached to the communication port, the indicator is always green.
When a device is connected to the communication port, the indicators are lit/off as

indicated above.

LEDs on the Serial Expander Module

LED Color Indication
green receiving data
COMM2 and COMM3 red transmitting dat
(except RS-485)% € ansmitting data
off idle
solid green idle
COMM?2 and COMM3 flickering green | receiving dat
(RS-485 only)® ckering green | receiving data

off

transmitting data

® When nothing is attached to the communication port, the indicator is always green.
When a device is connected to the communication port, the indicators are lit/off as

indicated above.

Product Specifications

Appendix

A

Control-Coprocessor Specifications

Table A.1

Table A.1 lists general specifications for the control coprocessor.

Control-Coprocessor Specifications

Backplane Current

Main module

e 2.50 Amps at +5 Vdc (1771-DMC module with no Ethernet)
* 4.00 Amps at +5 Vdc (1771-DMC1 or -DMC4 module with Ethernet and transceiver)®

Serial expander module

1.5 Amps at +5 Vdc

Fault Relay

Serial expander module

500 mA at 30 Vac/dc (resistive)

Environmental
Conditions

Operating temperature

0-60° C (32-140° F)

Storage temperature

-40-85° C (-40-185° F)

Relative humidity

5-95% (without condensation)

Time-of-Day Clock
and Calender

Maximum variations at 60° C

+5 minutes per month

Typical variations at 20° C

+20 seconds per month

Communication Ports?

COMMO

RS-232C; 9-pin

COMM1, COMM2, and
COMM3

RS-232C, -423, -485, and -422A compatible; 25-pin

Ethernet port

TCP/IP protocol using FTP, TELNET, and socket library routines;
INTERCHANGE server, SNMP compatible (MIB I);
15-pin standard transceiver

Communication Rates

COMMO, COMM1, COMM2,
and COMMS3 ports

110, 150, 300, 600, 1200, 2400, 4800, and 9600 bps, 19.2 Kbps, and 38.4 Kbps

Ethernet

10 Mbps

« direct-connect to a PLC-5 programmable controller

Location 1771-1/0O chassis » same chassis as a programmable controller, but standalone
« remotely located from a programmable controller and standalone
Main module (on the upper between 24 and 26
C connector) * between 30 and 32
Keying Serial expander module (one |+ between 16 and 18 (upper C connector)
on the upper C and two onthe |« hetween 2 and 4 (lower D connector)
lower D connectors) « between 16 and 18 (lower D connector)
» CSA certified
Agency Certification (Only when product is marked) |« CSA Class |, Division 2, Groups A, B, C, D
» UL listed
Battery Life Main module 1 year

@ This is an approximate value. See Chapter 2, Installing the Control Coprocessor, for instructions on calculating backplane current requirements.
@ With the 1771-DMC module (256 Kbyte), DF1 is not available on the communication ports; if you add an optional 1- or 4-Mbyte SIMM, however,

the communication ports will initialize with DF1 capability.

A-1

Appendix A

Control-Coprocessor Specifications

Product Compatibility Table A.2 lists products compatible with the control coprocessor.

Table A.2
Other Allen-Bradley Products Compatible with the Control Coprocessor

Programmable Controllers 1/0 Chassis Adapter Terminals or
Modules Personal Computers

Direct-Connect Mode Any Universal Any 1771-ASB Terminals:

« PLC-5/11 processor 1771 1/0 chassis fadapter module « VT220 (DEC)

 PLC-5/20 processor ::nh:sr;smOte « other ASCII terminal

* PLG-5/20E processor Personal Computers:

 PLC-5/30 processor « IBM® PC/AT

 PLC-5/40 (series B, revision B or later) processor . T47

* PLC-5/40E processor . T50

 PLC-5/40L processor . T53

 PLC-5/60 (series B, revision B or later) processor . T60

 PLC-5/60L processor
 PLC-5/80 processor
 PLC-5/80E processor

Standalone Mode in a programmable-controller chassis
« any PLC-5 processor

* mini PLC-2 processor

Standalone Mode in a remote chassis

« any PLC-5, PLC-5/250 processor
 PLC-3 processor
 PLC-2 processor (remote I/O only)

Control-Coprocessor Table A.3 shows RAM configuration. You can configure free user portion
Memory of RAM for your requirements. You can also change the default size of the
TAG table. See Chapter 3 for more information.

Table A3
RAM Configuration
Total RAM Default RAM-Disk Size RAM Required by the System Default TAG Table® Free User RAM®
256 Kbytes (1771-DMC)® 120 Kbytes 0 72 Kbytes
1 Mbyte (1771-DMC1) 64 Kbytes 215 Kbytes 80 Kbytes 665 Kbytes
4 Mbytes (1771-DMC4) 215 Kbytes 80 Kbytes 3737 Kbytes

@ To change the default size of the TAG table, see the section in Chapter 3 on configuring the control coprocessor (CC_CFG utility).

@ To configure the control coprocessor RAM free user memory, see Chapter 3 on configuring the control-coprocessor system memory
(MEM_CFG utility).

@ Source debugging for C programs does not work with this memory configuration. Debugging requires a minimum of 512 Kbytes.

A-2

CSA Certification

UL Certification

Appendix A

Control-Coprocessor Specifications

Table A.4 lists the optional RAM single inline memory modules (SIMMS)
that you can add to your control coprocessor.

Table A.4
Additional RAM Memory (optional)

Memory Size Catalog Number
256 Kbyte 1771-DRS

1 Mbyte 1771-DRS1

4 Mbytes 1771-DRS4

© These optional RAM SIMMS are not the same as those used in
generic personal computers, which are dynamic RAM. The
1771-DRS RAM SIMMS are special static RAM chips.

Important: If you have an optional memory module (1771-DRS1 or
-DRS4) in the second SIMM socket of the coprocessor and the memory in
that socket is configured for battery backup, the memory in the second
socket might become corrupted after power is cycled. This problem does
not occur in the standard factory configuration for the 1771-DMC,

-DMC1, and -DMCA4. It only affects memory in the second SIMM socket
on older coprocessor modules with these part numbers:

1771-DMC | 96102271 |96102274 (96102277 |96845871 |96845872 | 96845873
1771-DMC1 | 96102272 | 96102275 |96102278 |96845971 |96845972 | 96845973
1771-DMC4 | 96102273 |96102276 |96102279 |96846071 |96846072 | 96846073

If you have one of the above part numbers and you want to install and
configure battery backup in the second SIMM socket, return your module
to Allen-Bradley for an update.

CSA certifies products for general use as well as for use in hazardous
locations. Actual CSA certification is indicated by the product label. See
the CSA Hazardous Location Approval Supplemental Product Information,
publication ICCG-4.1, for more information.

Underwriters Laboratories Inc. (UL) performs safety investigations of
electrical and electronic equipment and products as well as other
equipment and products. After product samples have been safety tested
and are found to comply with applicable safety requirements, UL
authorizes a manufacturer to apply the appropriate UL Mark on products
that continue to comply with the requirements. In the case of

A-3

Appendix A

Control-Coprocessor Specifications

Allen-Bradley’s control coprocessor, it is the presence of the UL Listing
Mark on the individual product that indicates UL certification.

A-4

Appendix Objectives

What Is the Application
Program Interface

Application Program Interface
Library of Functions

This appendix provides information on the Application Program Interface
(API) library of functions. For each function available, you are given the

following:

C syntax

parameters

returns

description
C example
BASIC example
references

APl is a library of functions and executable commands. The following are
the functions and commands available in the API library.

API Function Definition

BPI Control-coprocessor commands that access the data-table memory of a
programmable controller through the backplane interface (BPI)

CcC Control-coprocessor utility commands that handle functions such as trap
initialization, error handling, ASCII displays, etc.

DTL Data-table library (DTL) commands that access the data-table memory of a
programmable controller that is directly connected (direct-connect mode) to the
control coprocessor

MSG Control-coprocessor message (MSG) commands that handle unsolicited
Message Instructions from a programmable controller ladder-logic program
(direct-connect mode)

TAG Control-coprocessor commands (TAG) that provide access to the

control-coprocessor memory for external devices that are connected via the serial
interface(s); ControlView® is an example of such a device that would require
access to control-coprocessor memory; TAG also provides access to
control-coprocessor memory between 0S-9 program modules

See Chapter 5, “Planning Programs for the Control Coprocessor”, for
information on how to use these API functions in your C, assembler, and
BASIC programs.

B-1

Appendix B

API Library of Routines

Using Pointers

Using Pointers

The C syntax section in this appendix provides, in C definition format, the
arguments for each function. In keeping with how functions are defined in
C, the syntax uses an asterisk (*) in the type declaration for an argument to
indicate that the function expects a pointer to the given type, for example:

unsigned DTL_DEF_AVAIL (num_avail)
unsigned *num_avalil;
/*{a function definition would be here!} */

In actual practicethe pointer must point to some existing memory
If the declaration above were used in an actual program, the pointer,
num_avail , would not point to anything.

To emphasize this and provide a guide for use, the C example section for
each function will declare a variable of the required type (which allocates
memory for the variable) and will then use the “address of” (&) operator to
pass the address.

main ()

{
unsigned num_avail; /* allocated memory for variable! */
CC_INIT ();

DTL_DEF_AVAIL (&num_avail);
if (num_avail >0) [* OK */

When a function requires a pointer to a type, ensure that you pass the
address of an area of memory that you have created.

char *pointer_only; /* NO */

char allocated_array [100]; [* YES! */

char *pointer_only = “string constant has an address \n”
I* YES */

When a function expects a pointer to any type or to a type that depends on
other arguments, the C syntax definition uses the pointer-to-void syntax.

void *ptr_to_some_unknown_type;

Your program should pass a pointer to a type that matches the data
being processed.

BPI_DISCRETE

Appendix B

API Library of Routines
BPI_DISCRETE

Gets the updated output-image word and optionally sets the input-
image word.

Important: Only a single task should use the BPI functions. A second
calling process is put to sleep if the BPI is already in use. The second task
could time out unexpectedly.

C Syntax

#include <copro.h>

unsigned short BPI_DISCRETE (mode, input_img)
int mode;
unsigned short input_img;

Parameters

mode

Specifies whether or not the function sends a new value to the
programmable controller input image table using NO_MODIFY or
MODIFY (defined in COPRO.H).

Important: If the mode parameter is invalid (i.e. does not equal MODIFY
or NO_MODIFY), then the function will force the mode to NO_MODIFY.
It is difficult to return an error in this case because the expected return is
the output-image value from the programmable-controller data table.

input_img

The value sent to the programmable-controller input-image table at the
address corresponding to the control coprocessor’s physical address
(according to rack and slot).

Returns

Variable Meaning

out_img ‘ The programmable controller’s output-image word for the control coprocessor

Description

Use the BPI_DISCRETE function to return the programmable controller’s
updated output-image word for the control-coprocessor backplane 1/O slot.
The function can also update the control-coprocessor input-image word in
the programmable-controller input image usingitipat_img parameter.

B-3

Appendix B

API Library of Routines
BPI_DISCRETE

The only bits available for use by the application program are the upper 8
bits (10-17). The lower 8 bits (0-7) are reserved for block transfer, even if
there are no block transfers programmed to the control coprocessor.

C Example

unsigned short output_img;
unsigned short input_img;
int mode = MODIFY

input_img = OxF800; [* bit pattern to PLC-5
controller input word */
output_img = BPI_DISCRETE (MODE, input_img); /* send to inpt image,
get from output image*/
if (output_img & 0x0100)
do_bit_0O_true_function ();.

BASIC Example
The BASIC function code is 32.

Important: For BASIC, the data type for theut_img and
output_img parameters is INTEGER.

DIM inputimg,outputimg :INTEGER

inputimg=256

RUN AB_BAS(32,outputimg,1,inputimg)

References

BPI_READ(); BPI_WRITE();

BPI_READ

Appendix B

API Library of Routines
BPI_READ

Responds to a synchronous block-transfer write from a
programmable controller.

Important: Only a single task should use the BPI functions. A second
calling process is put to sleep if the BPI is already in use. The second task
could time out unexpectedly.

C Syntax
#include <copro.h>

unsigned BPI_READ (size,dst,timeout,trg_mask)
unsigned char size;
short *dst;
unsigned int timeout;
unsigned short trg_mask;

Parameters
size

Determines how many words the programmable controller
will send.

dst

Provides the address of the buffer where the data is stored that the
programmable controller will send.

timeout

The function timeout in seconds. The application program stops until
the function completes or times out. A value of O causes the function to
use the minimum value of 1 second. The maximum value is TOMAX

(Ox 3fff).
trg_mask

Use this word mask to inform a programmable controller to initiate a
block-transfer write to the control coprocessor. The ladder-logic
program in the programmable controller monitors this mask as a
condition to trigger the block transfer. The bit mask is the actual
input-image word for the rack and slot location of the control
coprocessor. If the parameter is null, then it won'’t attempt to send the
bit mask to the programmable controller before the BPI_READ.

B-5

Appendix B

API Library of Routines
BPI_READ

B-6

Returns

Status Symbolic Name Meaning

0 CC_SUCCESS Operation successful

118 CC_E_TIME I/O operation did not complete in time
160 CC_E_INV_TO Invalid timeout value

164 CC_E_INV_BPI_MASK Invalid value for BPI trigger mask

190 CC_E_SIZE Invalid size for operation
Description

The BPI_READ routine allows the programmable controller to perform a
block-transfer write over the 1/0 backplane to the control coprocessor.

It may accomplish a block-transfer write with the control coprocessor by
allowing both a timeout and a trigger mask to be specified. The function
will first do a single transfer with the programmable controller using the
caller’s trigger mask. The function will then return to the caller when
either the block transfer or the timeout occurs. The function will return a
success or fail status. In the case of a fail status, the caller can check the
returned status value to find out why the function failed (i.e., transfer_size
> 64).

The programmable-controller ladder program can monitor the input image
for the control coprocessor to receive the trigger mask. If one of the
user-specified bits goes true, then a block-transfer write to the control
coprocessor can be initiated.

C Example
unsigned char size=6; [* size of block transfer */
short inbuff[32]; [* user location to copy data to */
unsigned int timeout=2; /* user timeout in two seconds */
unsigned short trg_mask=0x400; /* trigger mask, bit 12 (octal) is set */
int status; [* status value of BPI_READ */

status = BPI_READ (size, inbuff, timeout, trg_mask);

Appendix B

API Library of Routines
BPI_READ

BASIC Example

The BASIC function code is 34.

Important: For BASIC, the data type for thebuff andtrgmask
parameters is INTEGER. There is no byte-type constant; therefore,
byte-type variables must be used to pass the byte-type information.

DIM status,timeout,inbuff(32),trgmask . INTEGER
DIM size :BYTE

timeout=4

trgmask=4

size=6

RUN AB_BAS(34,status,size,ADDR(inbuff(1)),timeout,trgmask)

References

BPI_WRITE();

B-7

Appendix B

API Library of Routines

BPI_WRITE

BPI_WRITE

B-8

Responds to a synchronous block-transfer read from a
programmable controller.

Important: Only a single task should use the BPI functions. A second
calling process is put to sleep if the BPI is already in use. The second task
could time out unexpectedly.

C Syntax
#include <copro.h>

unsigned BPI_WRITE (size,src,timeout,trg_mask)
unsigned char size;
short *src;
unsigned int timeout;
unsigned short trg_mask;

Parameters
size

Determines how many words the programmable controller
will receive.

src

Provides the address of the buffer containing the data that the
programmable controller will receive.

timeout

Function timeout in seconds. The application program sleeps until the
function completes or times out. A value of O causes the function to use
the minimum value of 1 second. The maximum value is TOMAX

(Ox 3fff).
trg_mask

Use this word mask to inform a programmable controller to initiate a
block-transfer read to the control coprocessor. The ladder-logic
program in the programmable controller monitors this mask to trigger
the block transfer. The bit mask is the actual input-image word for the
rack and slot location of the control coprocessor. If the parameter is
null, then it won't attempt to send the bit mask to the programmable
controller before the BPI_WRITE.

Appendix B

API Library of Routines
BPI_WRITE

Returns

Status Symbolic Name Meaning

0 CC_SUCCESS Operation successful

118 CC_E_TIME I/O operation did not complete in time
160 CC_E_INV_TO Invalid timeout value

164 CC_E_INV_BPI_MASK Invalid value for BPI trigger mask

190 CC_E_SIZE Invalid size for operation
Description

Use the BPI_WRITE routine to allow the programmable controller
to perform a block-transfer read over the I/O backplane to the
control coprocessor.

It may accomplish a block-transfer read with the control coprocessor by
allowing both a timeout and a trigger mask to be specified. The function
will first do a single transfer with the programmable controller using the
caller’s trigger mask. The programmable-controller ladder program can
monitor the input image for the control coprocessor to receive the trigger
mask. If one of the user-specified bits goes true, then a block-transfer read
to the control coprocessor is initiated. The function will then return to the
caller when either the block transfer or the timeout has occurred. This
function will return a success or fail status. In the case of a fail status, the
caller can check the returned status value to find out why the function
failed—i.e., transfer_size > 64.

C Example
unsigned char size=6; [* size of block transfer */
short outbuff[32]; /* location of copy data from */
unsigned int timeout=2; /* user timeout in two seconds */
unsigned short trg_mask = 0x400; /*trigger mask, bit 12 (octal) is set */
int status; [*status value of BPI_WRITE*/

status = BPI_WRITE (size, outbuff, timeout, trg_mask);

Appendix B

API Library of Routines

BPI_WRITE

B-10

BASIC Example

The BASIC function code is 33.

Important: For BASIC, the data type for thatbuff — andtrgmask
parameters is INTEGER. There is no byte-type constant; therefore,
byte-type variables must be used to pass the byte-type information.

DIM status,timeout,outbuff(32),trgmask - INTEGER
DIM size :BYTE

timeout=4

trgmask=2

size=6

RUN AB_BAS(33,status,size, ADDR(outbuff(1)),timeout,trgmask)

References

BPI_READ();

Appendix B

API Library of Routines
CC_DISPLAY DEC

CC_DISPLAY_DEC Displays an integer value in decimal on the ASCII display of the serial
expander module.
C Syntax
#include <copro.h>

unsigned CC_DISPLAY_DEC (val)
int val;

Parameters
val

Contains the integer value to be displayed in decimal form on the ASCII
display. The display ranges from -999 to 9999.

Returns

Status Symbolic Name Meaning

0 CC_SUCCESS Operation successful
141 CC_E_CNVT Data-conversion error

159 CC_E_NOEXPANDER Expander not present

Description

Use the CC_DISPLAY_DEC function to display an integer value in the
ASCII display. The value must be in the range -999 through 9999.

Important: ASCII display remains unchanged until another display
function call is performed successfully.

C Example

unsigned status;.
int value = 1234;

status = CC_DISPLAY_DEC (value);

B-11

Appendix B

API Library of Routines

CC_DISPLAY DEC

B-12

BASIC Example

The BASIC function code is 106.

DIM status :INTEGER
DIM data . INTEGER

rem * CC_DISPLAY_DEC - Display data to the expander as 4
rem * decimal characters
RUN AB_BAS (106,status,data)

References

CC_ERROR(); CC_ERRSTR();

CC_DISPLAY_EHEX

Appendix B

API Library of Routines
CC_DISPLAY_EHEX

Displays an unsigned-integer value in hexadecimal on the ASCII display of
the serial expander module.

C Syntax

#include <copro.h>

unsigned CC_DISPLAY_EHEX (val)
unsigned val;

Parameters
val

Contains the unsigned-integer value to be displayed in hexadecimal on
the ASCII display. The display ranges from 0 to FFFF.

Returns

Status Symbolic Name Meaning

0 CC_SUCCESS Operation successful
141 CC_E_CNVT Data-conversion error

159 CC_E_NOEXPANDER Expander not present

Description

Use the CC_DISPLAY_EHEX function to display an unsigned-integer
value in 4-digit hexadecimal on the ASCII display. The value must be in
the range of 0 through FFFF.

Important: ASCII display remains unchanged until another display
function call is performed successfully.

Be consistent when using hexadecimal or decimal radix on the ASCII

display for ease of interpretation—i.e., some hexadecimal values can
appear to be decimal values.

B-13

Appendix B

API Library of Routines
CC_DISPLAY_EHEX

B-14

C Example

unsigned status;.

status = CC_DISPLAY_EHEX (0x301F);

BASIC Example

The BASIC function code is 105.

DIM status - INTEGER
DIM data :INTEGER

rem * CC_DISPLAY_EHEX - Display data to the expander as 4
rem * hexadecimal characters
RUN AB_BAS (105,status,data)

References

CC_ERROR(); CC_ERRSTR();

CC_DISPLAY_HEX

Appendix B

API Library of Routines
CC_DISPLAY_HEX

Displays an unsigned-integer value in hexadecimal on the ASCII display.

C Syntax
#include <copro.h>

unsigned CC_DISPLAY_HEX (val)
unsigned val;

Parameters
val

The unsigned-integer value to be displayed in hexadecimal on the
ASCII display. The display ranges from OH to FFFH.

Returns

Status Symbolic Name Meaning

0 CC_SUCCESS Operation successful
141 CC_E_CNVT Data-conversion error

159 CC_E_NOEXPANDER Expander not present

Description

Use the CC_DISPLAY_HEX function to display an unsigned-integer value
in 3-digit hexadecimal on the ASCII display. The value must be in the
range of OH through FFFH. The 3 digits are displayed with a trailing “H.”

Important: ASCII display remains unchanged until another display
function call is performed successfully.

C Example

unsigned status;.

status = CC_DISPLAY_HEX (0x301);

B-15

Appendix B

API Library of Routines

CC_DISPLAY_HEX

B-16

BASIC Example

The BASIC function code is 104.
DIM status INTEGER

rem * CC_DISPLAY_HEX - Display data to the expander as 3
rem * hexadecimal characters followed by H
RUN AB_BAS (104,status,$345)

References

CC_ERROR(); CC_ERRSTR();

CC_DISPLAY_STR

Appendix B

API Library of Routines
CC_DISPLAY_STR

Copies four characters to the ASCII display.

C Syntax
#include <copro.h>

unsigned CC_DISPLAY_STR (str_ptr)
char *str_ptr;

Parameters

str_ptr

Specifies a pointer to the buffer that contains the characters to display.

Returns
Status Symbolic Name Meaning
0 CC_SUCCESS Operation successful

159 CC_E_NOEXPANDER Expander not present

Description

Use the CC_DISPLAY_STR function to display a 4 character string on the
optional ASCII display.

Important: ASCII display remains unchanged until another display
function call is performed successfully.

CC_DISPLAY_STR looks at the string as a four-character buffer.
Therefore, it is not necessary to include a null character as a terminator.
Likewise, any null character occurring within the four-character buffer
will be displayed.

B-17

Appendix B

API Library of Routines
CC_DISPLAY STR

C Example

unsigned status;
char buff [4];

buff[0] = 0x02;
buff[1] ='5’;
buff[2] ='5’;
buff[3] = 0x02;
while (1)

{
status = CC_DISPLAY_STR (buff);

sleep (2);
status = CC_DISPLAY_STR (“Fred”);
sleep (2);

BASIC Example

The BASIC function code is 102.
DIM status - INTEGER

rem * CC_DISPLAY_STR - Display the string -AB- on expander module
RUN AB_BAS (102,status,“-AB-")

References

CC_ERROR(); CC_ERRSTR();

B-18

CC_ERROR

Appendix B

API Library of Routines
CC_ERROR

Gets a pointer to a NULL-terminated “canned” error message.

C Syntax
#include <copro.h>

char *CC_ERROR (error)
unsigned error;

Parameters
error
Specifies the error message to print. The number is typically supplied

by the status returned from an API function call or the I/O status
returned in iostat.

Returns

Variable Value

str_ptr str_ptris a pointer to the “canned” error message;
see Table B.A for a list of all the error messages

Description

Use the CC_ERROR function to get a pointer to the “canned” error
message corresponding to an error number. This error number is typically
the value of the iostat variable or the return status of an API function. We
recommend that you use this function in a C routine, although you can use
it in a BASIC procedure. See CC_ERRSTR for a BASIC procedure.

B-19

Appendix B

API Library of Routines
CC_ERROR

C Example

unsigned status;
unsigned machinel;
unsigned iostat;
unsigned short parts1;
char *err_stg;

status = DTL_READ_W (machinel, &partsl, &iostat);
if (status != DTL_SUCCESS || iostat I=DTL_SUCCESS)

{
err_str = CC_ERROR (status)
printf (“Error during read : %s - status = %d\n”,err_str,status);
err_str = CC_ERROR (iostat)
printf (“Error during read : %s - iostat = %d\n”, err_str,iostat);
}

BASIC Example

The BASIC function code is 100.

DIM ptr :INTEGER
DIM iostat T INTEGER

rem * CC_ERROR - Get the pointer to the string for the iostat value
RUN AB_BAS (100,ptr,iostat)
print using “h8”,ptr

References

CC_ERRSTR();

B-20

CC_ERRSTR

Appendix B

API Library of Routines
CC_ERRSTR

Copies the “canned” null-terminated error message into the user’s
local buffer.

C Syntax
#include <copro.h>

void CC_ERRSTR (error,err_ptr)
unsigned error;
unsigned char *err_ptr;
Parameters

error

Specifies which error message to copy. The number is typically
supplied by the status returned from an API function call or the 1/0
status returned in iostat.

err_ptr
This parameter specifies an 80-character buffer to which the error string
will be copied

Returns

None.

Description

Use the CC_ERRSTR function to copy the “canned” error message
corresponding to an error number into the user’s local buffer. This error
number is typically the value of the iostat variable or the return status of an
API function. We recommend that you use this function in a BASIC
procedure, although you can use it in a C routine. See CC_ERROR for a
C routine.

B-21

Appendix B

API Library of Routines
CC_ERRSTR

C Example

unsigned status, machl, iostat;
unsigned short partl;
char err_txt[80];

status = DTL_READ_W (machl, &partl, &iostat);
if (status != DTL_SUCCESS || iostat != DTL_SUCCESS)

{
CC_ERRSTR (status, err_text);

printf (“Read error %d: %s\n”, status, err_text);
CC_ERRSTR (iostat, err_text);
printf (“I/O status %d: %s\n”, iostat, err_text);

}

else
printf (‘Read: SUCCESS\n");

BASIC Example

The BASIC function code is 101.

DIM buffer : STRING[81]
DIM status . INTEGER
DIM iostat . INTEGER

rem * CC_ERRSTR - Get the string for the iostat value - display on terminal
RUN AB_BAS (101,status,iostat, ADDR(buffer))
print buffer

References

CC_ERROR();

B-22

Appendix B

API Library of Routines
CC_EXPANDED_STATUS

CC_EXPANDED_STATUS Gets current expanded status information of the coprocessor.

C Syntax
#include <copro.h>

unsigned CC_EXPANDED_STATUS (exp_stat);
unsigned *exp_stat;

Parameters

exp_stat

A pointer to a buffer of 5 unsigned integers that receive the expanded
status information.

Buffer: With this status information:
[0] Total Memory
11 TAG Table Size
2 NV Disk Size
[3] NV Module Memory
[4] NV User Memory

Returns
Value Meaning
XX ‘ Bitmap of the current coprocessor status

See CC_STATUS for definition of the bit map.

Description

Use CC_EXPANDED_STATUS to get the current expanded status
information of the coprocessor.

C Example

unsigned coprostat;
unsigned exp_stat[5];

coprostat = CC_EXPANDED_STATUS(exp_stat);
if (!(coprostat & 0x0001)) BAT_LOW_ALARM ();
printf (“NV Module Memory Size is %x\n”,ext_stat[3]);

B-23

Appendix B

API Library of Routines
CC_EXPANDED_STATUS

BASIC Example

The BASIC function code is 112.

DIM coprostat INTEGER
DIM extstat(5) :INTEGER

rem * CC_EXPANDED_STATUS - Get current expanded coprocessor
rem * status information

RUN AB_BAS (112,coprostat, ADDR(extstat))

print using “S20<,H8”, “NV Module Memory =" extstat(3)

References

CC_STATUS(); utility cc_status

B-24

CC_GET DISPLAY STR

Appendix B

API Library of Routines
CC_GET DISPLAY STR

Copies the characters of the current ASCII display to the user’s buffer.

C Syntax
#include <copro.h>

unsigned CC_GET_DISPLAY_STR (str_ptr)
char *str_ptr;

Parameters
str_ptr

Specifies a pointer to users buffer to receive the display characters.
This function always copies four characters. No null is appended.

Returns
Status Symbolic Name Meaning
0 CC_SUCCESS Operation successful

159 CC_E_NOEXPANDER Expander not present

Description

Use the CC_GET_DISPLAY_STR function to get the current
display values.

C Example

unsigned status;
char buff [4];

status = CC_GET_DISPLAY_STR (buff);

B-25

Appendix B

API Library of Routines
CC_GET DISPLAY STR

BASIC Example

The BASIC function code is 103.

DIM status :INTEGER
DIM dspbuff(4) :BYTE

rem * CC_GET_DISPLAY_STR - Get display data from the expander display
RUN AB_BAS (103,status,ADDR(dspbuff(1)))

References

CC_ERROR(); CC_ERRSTR();

B-26

Appendix B

API Library of Routines
CC_INIT

CC_INIT Initializes internal data structures and installs trap handler.
Important: The CC_INIT function must be called before you can use any
API function.
C Syntax

unsigned CC_INIT()

Parameters

None.

Returns

None.

Description

Use the CC_INIT function to initialize internal control-coprocessor
memory structures and install the trap handler used for the user’s
API functions.

C Example

main ()

{
CC_INIT ();

}

/* other API functions */

BASIC Example

procedure COPRO
rem * CC_INIT - This call must be made before any other API functions are called
RUN AB_BAS (0)

B-27

Appendix B

API Library of Routines

CC_PLC BTR

CC_PLC_BTR

B-28

Requests the PLC-5 programmable controller to perform a block-transfer
read from an intelligent 1/0O module.

Important: You can use this functiaonly if the coprocessor is connected
directly to the PLC-5 programmable controller.

C Syntax
include <copro.h>

unsigned CC_PLC_BTR (r,g,m,size,retry,data_ptr,iostat)
unsigned char r;
unsigned char g;
unsigned char m;
unsigned char size;
unsigned char retry;
unsigned short *data_ptr;
unsigned *iostat;

Parameters
r

The assigned rack number in which the target I/O module resides.

g
The I/O group number that specifies the target 1/0O module.
m
The module slot number within the I/O group.
size
The number of words to be read from the 1/0O module.
retry
The retry value for doing the block transfer. If the value is, O the
processor will retry the transfer one time before returning. If the value
is 1, the processor will repeatedly attempt the transfer from an
unresponsive module for four seconds.
data_ptr
The address of a data buffer that will store the block transfer read data.
jostat

Appendix B

API Library of Routines
CC_PLC BTR

This parameter returns a final completion status. Possible completion
status values are shown in the following table.

Value Meaning

0 CC_SUCCESS = operation completed successfully

127 CC_E_NOATMPT = I/O operation not attempted; see status variable for reason

xxx® PCCC_E_xxx = operation refused by the PLC-5 programmable controller
® See Table B.A for PCCC errors.

Returns

Status Symbolic Name Meaning

0 CC_SUCCESS Operation successful

124 CC_E_FAIL Expander not present

157 CC_E_NOTCONNECT PLC is not connected or offline
165 CC_E_BAD_RACK Rack value out of range

166 CC_E_BAD_GROUP Group value out of range

167 CC_E_BAD_MODULE Module slot value out of range
168 CC_E_BAD_RETRY Retry value out of range

190 CC_E_SIZE Invalid size for operation
Description

Use the CC_PLC_BTR function to get block-transfer information from
an analog I/O module. This function may take a long period of real time
to complete.

C Example

unsigned char rack = 0;
unsigned char group = 5;
unsigned char module = 0;
unsigned char size = 1;
unsigned iostat;

unsigned short buff;

status = CC_PLC_BTR (rack,group,module,size,1,&buff,&iostat);
if (!(status))printf (“value from module is %x\n”,buff[0]);

B-29

Appendix B

API Library of Routines
CC_PLC BTR

BASIC Example

Important: For BASIC, the data type for the buff parameter is
INTEGER. There is no byte-type constant; therefore, byte-type variables
must be used to pass the byte-type information.

The BASIC function code is 114.

DIM apistat . INTEGER
DIM iostat . INTEGER
DIM buff . INTEGER
DIM r :BYTE
DIMg :BYTE

DIM m :BYTE
DIM s :BYTE

DIM rt :BYTE

r:=0

g:=5

m:=0

s:=1

rt:=1

rem * CC_PLC_BTR - Get block transfer information from /O
RUN AB_BAS (114,apistat,r,g,m,s,rt, ADDR(buff), ADDR(iostat))
print using “S20<,H8”, “Value from module =", buff

References

CC_PLC_BTW();

B-30

CC_PLC_BTW

Appendix B

API Library of Routines
CC_PLC BTW

Requests the PLC-5 programmable controller to perform a block-transfer
write to an intelligent /0O module.

Important: You can use this functiaonly if the coprocessor is connected
directly to the PLC-5 programmable controller.

C Syntax
include <copro.h>

unsigned CC_PLC_BTW (r,g,m,size,retry,data_ptr,iostat)
unsigned char r;
unsigned char g;
unsigned char m;
unsigned char size;
unsigned char retry;
unsigned short *data_ptr;
unsigned *iostat;

Parameters
r

The assigned rack number in which the target /O module resides.

g
The I/O group number that specifies the target I/0O module.
m
The module slot number within the I/O group.
size
The number of words to be written to the I/O module.
retry
The retry value for doing the block transfer. If the value is O, the
processor will retry the transfer one time before returning. If the value
is 1, the processor will repeatedly attempt the transfer to an
unresponsive module for four seconds.
data_ptr
The address of a data buffer that contains the block-transfer write data.
iostat

This parameter returns a final completion status. Possible completion
status values are shown in the following table.

B-31

Appendix B

API Library of Routines
CC_PLC BTW

Value Meaning

0 CC_SUCCESS = operation completed successfully

127 CC_E_NOATMPT = I/O operation not attempted; see status variable for reason

xxx® PCCC_E_xxx = operation refused by the PLC-5 programmable controller
® See Table B.A for PCCC errors.

Returns

Status Symbolic Name Meaning

0 CC_SUCCESS Operation successful

124 CC_E_FAIL Expander not present

141 CC_E_CNVT Data-conversion error (BASIC only)
157 CC_E_NOTCONNECT PLC is not connected or offline
165 CC_E_BAD _RACK Rack value out of range

166 CC_E_BAD_GROUP Group value out of range

167 CC_E_BAD_MODULE Module slot value out of range
168 CC_E_BAD_RETRY Retry value out of range

190 CC_E_SIZE Invalid size for operation
Description

Use the CC_PLC_BTW function to put block-transfer information to an
analog I/0 module. This function may take a long period of real time
to complete.

C Example

unsigned char rack = 0;
unsigned char group = 5;
unsigned char module = 0O;
unsigned char size = 1;
unsigned iostat;

unsigned short buff;

buff = 0x23;
status = CC_PLC_BTW (rack,group,module,size,1,&buff,&iostat);
if (!(status))printf (“data sent to module\n”);

B-32

Appendix B

API Library of Routines
CC_PLC BTW

BASIC Example

Important: For BASIC, the data type for the buff parameter is
INTEGER. There is no byte-type constant; therefore, byte-type variables
must be used to pass the byte-type information.

The BASIC function code is 113.

DIM apistat . INTEGER
DIM iostat . INTEGER
DIM buff . INTEGER
DIM r :BYTE
DIMg :BYTE

DIM m :BYTE
DIM s :BYTE

DIM rt :BYTE

r:=0

g:=5

m:=0

s:=1

re=1

buff :=$23

rem * CC_PLC_BTW - Put block transfer information to 1/0
RUN AB_BAS (113,apistat,r,g,m,s,rt, ADDR(buff), ADDR(iostat))
print “data sent to module”

References

CC_PLC_BTR();

B-33

Appendix B

API Library of Routines
CC_PLC_STATUS

CC_PLC_STATUS Returns current status of the processor status flags and major fault
words. This function can be used with a direct-connect mode control
coprocessor only.

C Syntax

#include <copro.h>

unsigned CC_PLC_STATUS (plc_sts)
unsigned *plc_sts;

Parameters

plc_sts

A bit map of the current PLC-5 programmable controller status. The bit
map is defined as:

Bit Definition Bit Definition

No. No.

0 RAM bad 16 bad user program memory

1 run mode 17 illegal operand address

2 test mode 18 programming error

3 program mode 19 | function chart error

4 burning EEPROM 20 duplicate labels found

5 download mode 21 power loss fault

6 edits enabled 22 chan 3 fault

7 remote modes 23 user jsr to fault routine

8 forces enabled 24 watchdog fault

9 forces present 25 system illegally configured

10 |successful EEPROM burn 26 hardware fault

1 online editing 27 MCP file does not exist
IMCP file is not ladder or SFC

12 |debug mode 28 Pl file is not ladder
[Pl file does not exist

13 |user program checksum done 29 STI program is not ladder
[STI program does not exist

14 |last scan of ladder/SFC step 30 Fault program is not ladder
[fault program does not exist

15 |first scan of ladder/SFC step 31 Faulted program does not exist
[fault program is not ladder

Returns
Status Symbolic Name Meaning
0 CC_SUCCESS Operation successful

157 CC_E_NOTCONNECT PLC is not connected or offline

B-34

Appendix B

API Library of Routines
CC_PLC_STATUS

Description
Use CC_PLC_STATUS to get the current PLC-5 programmable-

controller status.

C Example

unsigned status;
unsigned plc_sts;

status = CC_PLC_STATUS (&plc_sts);

BASIC Example

The BASIC function code is 108.

DIM status - INTEGER
DIM plc_stat :INTEGER

rem * CC_PLC_STATUS - Get current PLC status information
RUN AB_BAS (108,status,ADDR(plc_stat))
print using “S16<,H8”, “PLC status =", plc_stat

References

None.

B-35

Appendix B

API Library of Routines
CC_PLC_SYNC

CC_PLC_SYNC

B-36

Synchronize with PLC-5 program scan. This function can be used with a
direct-connect mode control coprocessor only.

C Syntax

#include <copro.h>

unsigned CC_PLC_SYNC ()

Parameters

None.

Returns

Status Symbolic Name Meaning

0 CC_SUCCESS Operation successful

157 CC_E_NOTCONNECT PLC is not connected or offline

Description

Use the CC_PLC_SYNC function to synchronize to the PLC-5
programmable-controller ladder scan. This routine will put the calling task
to sleep until the PLC-5 programmable controller signals the start of a new
ladder scan. Due to the multitasking of OS-9, it should be noted that this
function is most effective when only one task is synchronized to the PLC-5
programmable-controller scan and that task is a higher priority than the
other tasks.

C Example

unsigned status;

status = CC_PLC_SYNCY();

Appendix B

API Library of Routines
CC_PLC_SYNC

BASIC Example

The BASIC function code is 107.
DIM status INTEGER

rem * CC_PLC_SYNC - synchronize to the PLC ladder scan
RUN AB_BAS (107,status)

References

None.

B-37

Appendix B

API Library of Routines
CC_STATUS

CC_STATUS Returns current status information of the coprocessor.

C Syntax
#include <copro.h>

unsigned CC_STATUS ();

Parameters

none

Returns

Value Meaning

XX ‘ Bitmap of the current coprocessor status

The bit map is defined as:

Bit No. Definition

0 Battery Status (0=low, 1=0k)

1 PLC-5 On-Line Status (0=off-line, 1=on-line)
Expander Presence Status (0=not present, 1=present)
PLC-5 Reset Enable Status (0=disabled, 1=enabled)
Not used
Flash Test Status (0=failed, 1=0k)

6-7 Not used

8-11 Encoded Memory Size (in megabytes)

1=0.25
2=.0.50
3=1.00
4=125
5=2.00
6=4.00
7=425
8=5.00
9=28.00

Al Bl wW|N

12-15 | Not used
16-23 | RAM Disk Size (in number of 64Kb blocks)
24-31 | Station Address

Description

Use CC_STATUS to get the current status information of the coprocessor.

B-38

Appendix B

API Library of Routines
CC_STATUS

C Example

unsigned coprostat;

coprostat = CC_STATUS();
if (!(coprostat & 0x0001)) BAT_LOW_ALARM ();

BASIC Example

The BASIC function code is 111.
DIM coprostat INTEGER

rem * CC_STATUS - Get current coprocessor status information
RUN AB_BAS (111,coprostat)
print using “S20<,H8",“Coprocessor status = ",coprostat

References

CC_EXPANDED_STATUS(); utility cc_status

B-39

Appendix B

API Library of Routines
DTL_C_DEFINE

DTL_C_DEFINE Adds a definition to the DTL data-definition table.

C Syntax
#include <copro.h>
unsigned DTL_C_DEFINE (name_id,data_definition)

unsigned *name_id;

char *data_def;
Parameters
name_id

Use to return a handle assigned by the library to the data.

data_definition

Use to specify the data you wish to access. The data_definition
character string is a null-terminated string composed of arguments
separated by commas.

“data_address,[elements],[CC data_type],[access type]”
data_address

Specifies the starting address of the data item.

The first three data files in the PLC-5 programmable controller are
fixed. When addressing thenp not reference a file number.
Usel:03 for rack O group 3, for example, nato3 for file

number 1.

[elements]

Optional; specifies the number of consecutive data elements,
starting at data_address, to be included in the data item. The
number of elements multiplied by the number of bytes per element
must be <= 2000 bytedefault is 1 element

You can specify elements to the bit level—for exampge/a
would point only to bit 4.

[CC data_type]

Optional; specifies data type of calling programs copy of the data.

B-40

Appendix B

API Library of Routines
DTL_C_DEFINE

CC Data Type: Is: CC Data Type: Is:

RAW no conversion LONG int (signed)
BYTE char (signed) ULONG unsigned int
UBYTE unsigned char FLOAT float
WORD® short (signed) DOUBLE double
UWORD unsigned short

@ Default is WORD
[access type]

Optional; legal access rights are:
* READ =read only
* MODIFY = read or write
Default is modify.

Returns

Status Symbolic Name Meaning

0 DTL_SUCCESS Operation successful

03 DTL_E_DEFBAD2 Invalid number of elements to DEFINE
04 DTL E _DEFBAD3 Invalid data type

05 DTL_E_DEFBAD4 Invalid access rights

09 DTL_E_DEFBADN Invalid number of DEFINE parameters
1 DTL E FULL Data DEFINE table is full

16 DTL E_INVTYPE Data is invalid type for operation

19 DTL_E_NOINIT DEFINE table not initialized

31 DTL E TOOBIG Data item greater than maximum allowed
38 DTL_E_DFBADADR Bad DEFINE address

40 DTL_E_INPTOOLONG DEFINE input string too long
Description

Use the DTL_C_DEFINE function to add a data definition to the table of
data definitions for the calling task. The DTL_C_DEFINE routine returns

a handle with which the calling task can refer to the data item in
subsequent DTL calls. You must use the DTL_C_DEFINE function to
create an entry for each contiguous range of data-table locations you need.

C Example

unsigned fred,; /*handle used in later DTL_READ_W or
DTL_WRITE_W calls*/
unsigned status;

status = DTL_C_DEFINE (&fred,“N10:2,10,WORD,READ");

B-41

Appendix B

API Library of Routines

DTL_C_DEFINE

B-42

BASIC Example

The BASIC function code is 2.

procedure COPRO
DIM status : INTEGER
DIM fred :INTEGER

rem * DTL_C_DEFINE - Define a data element
RUN AB_BAS (2,status,ADDR(fred),“N10:2,10,LONG,MODIFY")

References

DTL_READ_W(); DTL_WRITE_W(); DTL_INIT();
DTL_RMW_W(); DTL_DEF_AVAIL();

DTL_CLOCK

Appendix B

API Library of Routines
DTL_CLOCK

Sets the control-coprocessor date and time to the same date and time found
in the PLC-5 programmable controller.

Syntax

#include <copro.h>

unsigned DTL_CLOCK ()

Description

DTL_CLOCK synchronizes the control coprocessor time to within one
second of the clock for the PLC-5 programmable controller. This is a
one-time-only synchronization. The user can maintain synchronization by
executing DTL_CLOCK at regular intervals.

Since this routine performs I/O to the PLC-5 programmable controller, the
calling process must call DTL_INIT prior to calling DTL_CLOCK.

Returns

Status Symbolic Name Meaning

0 DTL_SUCCESS Operation successful

18 DTL_E_TIME /0 operation did not complete in time
19 DTL_E_NO_INIT DEFINE table not initialized

42 DTL_E_GETIME PLC-5 time invalid
C Example

unsigned status;
status = DTL_INIT (2);
status = DTL_CLOCK ();

B-43

Appendix B

API Library of Routines

DTL_CLOCK

B-44

BASIC Example

The BASIC function code is 18.

procedure COPRO
DIM status T INTEGER

rem * DTL_CLOCK - synchronize our clock with the PLC-5
RUN AB_BAS (18,status)

References

DTL_INIT();

Appendix B

API Library of Routines
DTL_DEF_AVAIL

DTL DEF AVAIL Returns the number of data definitions that can be added to the DTL
-7 data-definition table.

C Syntax

#include <copro.h>

unsigned DTL_DEF_AVAIL (num_avail)
unsigned *num_avalil;

Parameters

num_avalil

Contains the number of data definitions remaining in the
data-definition table.

Description

Use the DTL_DEF_AVAIL function to determine the number of data
definitions available in the calling task’s table of data definitions. The
function calculates the difference between the number of entries defined by
DTL_INIT and the number of successful data definitions made using
DTL_C_DEFINE and returns the results in the num_avail parameter.

Returns

Status Symbolic Name Meaning

0 DTL SUCCESS Operation successful

19 DTL E NO_INIT DEFINE table not initialized
C Example

unsigned status;
unsigned num_avail;

status = DTL_DEF_AVAIL (&num_avail);
printf (“%d definitions available\n”,num_avail);

B-45

Appendix B

API Library of Routines
DTL_DEF_AVAIL

B-46

BASIC Example

The BASIC function code is 4.

procedure COPRO
DIM status : INTEGER
DIM num_avail : INTEGER

rem * DTL_DEF_AVAIL - How many definitions available
RUN AB_BAS (4,status,ADDR(num_avail))

References

DTL_C_DEFINE(); DTL_C_UNDEF();

Appendix B

API Library of Routines
DTL GET_FLT

DTL_GET_FLT Gets a floating-point value from a byte array.

C Syntax
#include <copro.h>

unsigned DTL_GET_FLT (in_buf,out_val)
unsigned char *in_buf;
float *out_val,

Parameters

in_buf

Use to specify an array of four bytes containing an IEEE floating-point
value read from the data table as raw data.

out val

Contains the floating point value. It is assumed that the bytes are read
into the a data area using the RAW data_type.

Returns

Status Symbolic Name Meaning

0 ‘ DTL_SUCCESS Operation successful
Description

Use the DTL_GET_FLT to converts raw 32-bit IEEE float data, in 4-byte
array, to host-type float.

C Example

float read_val;
unsigned char untyped_data[60];
unsigned machine, iostat;

DTL_C_DEFINE (&machine, “F8:10,15,RAW,READ");
if (DTL_READ_W (machine, untyped_data, &iostat) == 0)

{
DTL_GET_FLT (&untyped_data [3], &real_val);

}

B-47

Appendix B

API Library of Routines
DTL GET_FLT

BASIC Example
Important: For BASIC, the data type for float_val is REAL.

The BASIC function code is 9.

procedure COPRO

DIM status - INTEGER
DIM floatbuff(4) : BYTE
DIM float_val :REAL

rem* DTL_GET_FLT
RUN AB_BAS (9,status,ADDR(floatbuff(1)),ADDR(float_val))

References
DTL_GET_WORD(); DTL_GET_3BCD();

DTL_GET_4BCD(); DTL_GET_WORD();
DTL_PUT_FLT(); DTL_PUT_3BCD(); DTL_PUT_4BCD();

B-48

DTL_GET_WORD

Appendix B

API Library of Routines
DTL_GET_WORD

Gets a word from a byte array.

C Syntax
#include <copro.h>

short DTL_GET_WORD (in_buf)
unsigned char *in_buf;

Parameters
in_buf
Use to specify an array of two bytes containing programmable-

controller data.

Returns

Variable Value

word_val word_val is the value generated by combining the two bytes into one word.; the
(short) bytes are assumed to have been read into the data area using the RAW qualifier

Description

Use the DTL_GET_WORD function to extract two bytes from a byte array
in programmable-controller format (raw) and returns a word (short) value
in control-coprocessor format.

C Example

short word_val,

unsigned char untyped_data[50];
unsigned machine;

unsigned iostat;

DTL_C_DEFINE (&machine, “N7:0,25,RAW,READ");
if (DTL_READ_W (machine, untyped_data, &iostat)==DTL_SUCCESS)

{
word_val = DTL_GET_WORD (&untyped_data[11]);

}

B-49

Appendix B

API Library of Routines
DTL_GET_WORD

BASIC Example

Important: For BASIC, the data type for the word_val parameter
is INTEGER.

The BASIC function code is 8.

procedure COPRO
DIM word_val :INTEGER
DIM getbuff(2) : BYTE

rem * DTL_GET_WORD
RUN AB_BAS (8,word_val, ADDR(getbuff(1)))

References
DTL_GET_FLT(); DTL_GET_3BCD();

DTL_GET_4BCD(); DTL_GET_WORD();
DTL_PUT_FLT(); DTL_PUT _3BCD(); DTL_PUT_4BCD();

B-50

DTL_GET 3BCD

Appendix B

API Library of Routines
DTL_GET_3BCD

Gets a 3-digit BCD value from a byte array.

Important: This function only examines the low-order 12 bits of the
buffer containing the BCD value. Data in the high-order 4 bits are ignored
when converting to binary format.

C Syntax
#include <copro.h>

unsigned DTL_GET_3BCD (in_buf,out_val)
unsigned char *in_buf
unsigned *out_val

Parameters
in_buf

Use to specify an array of two bytes that contains the 3-digit BCD
value. It is assumed the data were read from a data item with a control-
coprocessor data type that is raw.

out val

Contains the binary value.

Returns

Status Symbolic Name Meaning

0 DTL_SUCCESS Operation successful
4 DTL_E_CNVT Data conversion error
Description

Use the DTL_GET_3BCD to convert a programmable-controller
3-digit BCD value, stored in a 2-byte array, to a control-coprocessor
unsigned value.

C Example

unsigned status;
unsigned char thumbwheel_data [2];
unsigned thumbwheel_binary;

status = DTL_GET_3BCD (thumbwheel_data,&thumbwheel_binary);

B-51

Appendix B

API Library of Routines
DTL_GET 3BCD

BASIC Example

The BASIC function code is 10.

procedure COPRO

DIM status T INTEGER
DIM bed_buff(2) : BYTE
DIM bcd2 1 INTEGER

rem * DTL_GET_3BCD
RUN AB_BAS (10,status,ADDR(bcd_buff(1)),ADDR(bcd2))

References
DTL_GET_WORD(); DTL_GET_FLT();

DTL_GET_4BCD(); DTL_GET_WORD();
DTL_PUT_FLT(); DTL_PUT_3BCD(); DTL_PUT_4BCD();

B-52

DTL_GET 4BCD

Appendix B

API Library of Routines
DTL_GET_4BCD

Gets a 4-digit BCD value from a byte array.

C Syntax

#include <copro.h>

unsigned DTL_GET_4BCD (in_buf,out_val)
unsigned char *in_buf;
unsigned *out_val,

Parameters

in_buf

Use to specify an array of two bytes that contain the 4-digit BCD value.
It is assumed the data was read from a data item with a control
coprocessor data type that is raw.

out val

Contains the binary value.

Returns

Status Symbolic Name Meaning

0 DTL_SUCCESS Operation successful
4 DTL_E_CNVT Data conversion error
Description

Use the DTL_GET_4BCD to convert a programmable-controller
4-digit BCD value, stored in a 2-byte array, to a control-coprocessor
unsigned value.

C Example

unsigned status;
unsigned char thumbwheel_data;
unsigned thumbwheel_binary;

status = DTL_GET_4BCD (&thumbwheel_data,&thumbwheel_binary);

B-53

Appendix B

API Library of Routines
DTL_GET 4BCD

BASIC Example

The BASIC function code is 11.

procedure COPRO

DIM status T INTEGER
DIM bed_buff(2) : BYTE
DIM bcd2 1 INTEGER

rem * DTL_GET_4BCD
RUN AB_BAS (11,status,ADDR(bcd_buff(1)),ADDR(bcd2))

References
DTL_GET_WORD(); DTL_GET_FLT();

DTL_GET_4BCD(); DTL_PUT_WORD();
DTL_PUT_FLT(); DTL_PUT_3BCD(); DTL_PUT_4BCD();

B-54

Appendix B

API Library of Routines
DTL_INIT

DTL_INIT Creates and initializes the DTL data-definition table.

C Syntax

#include <copro.h>

unsigned DTL_INIT (max_defines)
unsigned max_defines;

Parameters

max_defines

Specifies the maximum number of entries in the data-definition table.
One entry is needed for each data item to be defined.

Important: Once you create the DTL data definition table, you cannot
change its size within the current process.

Returns

Status Symbolic Name Meaning

0 DTL_SUCCESS Operation successful

17 DTL E NO_MEM Not enough memory available
39 DTL_NO_REINIT DTL system already initialized
Description

Use the DTL_INIT function to initialize the data-table library before using
any DTL_ function calls.

Initializes internal data and creates a data-definition table by increasing the
memory area for the calling task .

Memory for the data-definition table is allocated dynamically when
DTL_INIT is called. Therefore, the maximum possible size of a given
task’s data-definition table depends on the amount of memory available in
the system’s free memory pool. A call to DTL_INIT will allocate
approximately 150 bytes per definition from the free-memory pool.

B-55

Appendix B

API Library of Routines
DTL_INIT

C Example

unsigned status;
status = DTL_INIT (100); [*creates room for 100
DTL data definitions*/

BASIC Example

The BASIC function code is 1.

procedure COPRO
DIM status : INTEGER

rem * DTL_INIT - Initialize DTL for 100 definitions
RUN AB_BAS (1,status,100)

References

DTL_C_DEFINE();

B-56

DTL_PUT FLT

Appendix B

API Library of Routines
DTL_PUT FLT

Puts a floating point value into a byte array. You can use this array to write
to a data item whose PLC data type is FLOAT and whose coprocessor data
type is RAW.

C Syntax
#include <copro.h>

unsigned DTL_PUT_FLT (in_val, out_buf)
float in_val;
unsigned char *out_buf;

Parameters
in_val
The control-coprocessor floating-point value.
out_buf
Specifies an array of four bytes that will receive the floating-

point value.

Returns

Status Symbolic Name Meaning

0 DTL_SUCCESS Operation successful
4 DTL_CNVT Data conversion error (BASIC only)
Description

Use the DTL_PUT_FLT to convert a control-coprocessor float to a 4-byte
array in IEEE 32-bit binary format and place it into the byte array.

C Example

unsigned status;
unsigned char untyped_data[50];
float flt_val;

status = DTL_PUT_FLT (flt_val, &untyped_data[10]);

B-57

Appendix B

API Library of Routines
DTL_PUT FLT

BASIC Example

Important: For BASIC, the data type for the float_val parameter
is REAL.

The BASIC function code is 13.

procedure COPRO

DIM status 1 INTEGER
DIM floatbuff(4) : BYTE
DIM float_val :REAL

rem*DTL_PUT_FLT
RUN AB_BAS (13, status, float_val, ADDR(floatbuff(1)))

References
DTL_GET_WORD(); DTL_GET_FLT();

DTL_GET_3BCD(); DTL_GET_4BCD();
DTL_PUT_WORD(); DTL_PUT_3BCD(); DTL_PUT_4BCD();

B-58

DTL_PUT_WORD

Appendix B

API Library of Routines
DTL_PUT_WORD

Puts a word into raw format.

C Syntax
#include <copro.h>

unsigned DTL_PUT_WORD (in_val, out_buf)
unsigned char in_val;
unsigned *out_buf;

Parameters
in_val

The word value to be encoded into the byte array.
out_buf

Specifies an array of two bytes to receive the converted value.

Returns

Status Symbolic Name Meaning
0 ‘ DTL_SUCCESS Operation successful

Description

Use the DTL_PUT_WORD to convert a control-coprocessor unsigned to
a 2-byte array (in programmable-controller format) and place it in the
2-byte array.

C Example

unsigned status;
unsigned char untyped_data[50];
unsigned word_val,

status = DTL_PUT_WORD (word_val, &untyped_data[10]);

B-59

Appendix B

API Library of Routines
DTL_PUT_WORD

BASIC Example

The BASIC function code is 12.

procedure COPRO

DIM status : INTEGER
DIM word_val :INTEGER
DIM putbuff(2) : BYTE

word_val := $SABCD
rem * DTL_PUT_WORD
RUN AB_BAS (12, status, word_val, ADDR(putbuff(1)))

References
DTL_GET_WORD(); DTL_GET_FLT();

DTL_GET_3BCD(); DTL_GET_4BCD();
DTL_PUT_FLT(); DTL_PUT_3BCD(); DTL_PUT_4BCD();

B-60

DTL_PUT_3BCD

Appendix B

API Library of Routines
DTL_PUT 3BCD

Puts a 3-digit BCD value into a byte array.

C Syntax
#include <copro.h>
unsigned DTL_PUT_3BCD (in_val, out_buf)

unsigned in_val;

unsigned char *out_buf;
Parameters
in_val

The word value to be encoded into the byte array.

out_buf

Specifies an array of two bytes that will receive the converted
3-digit BCD value.

Returns

Status Symbolic Name Meaning

0 DTL_SUCCESS Operation successful
4 DTL_E_CNVT Data-conversion error
Description

Use the DTL_PUT_3BCD to accept a longword integer value in
coprocessor format in the range of 0 to 999. It converts control-
coprocessor unsigned to 2-byte, 3-digit BCD value and places the result in
the specified 2-byte array.

C Example

unsigned status;
unsigned char untyped_data[50];
unsigned word_val,

status = DTL_PUT_3BCD (word_val, &untyped_data[10]);

B-61

Appendix B

API Library of Routines

DTL_PUT 3BCD

B-62

BASIC Example

The BASIC function code is 14.

procedure COPRO

DIM status - INTEGER
DIM bcd_buff(2) : BYTE
DIM bcd _val : INTEGER

rem * DTL_PUT_3BCD
RUN AB_BAS (14, status, bcd_val, ADDR(bcd_buff(1)))

References

DTL_GET_WORD(); DTL_GET_FLT();
DTL_GET_3BCD(); DTL_GET_4BCD();
DTL_PUT_WORD(); DTL_PUT_FLT();
DTL_PUT_4BCD();

DTL_PUT 4BCD

Appendix B

API Library of Routines
DTL_PUT 4BCD

Puts a 4-digit BCD value into a byte array.

C Syntax
#include <copro.h>
unsigned DTL_PUT_4BCD (in_val, out_buf)

unsigned in_val;

unsigned char *out_buf;
Parameters
in_val

The word value to be encoded into the byte array.

out_buf

Specifies an array of two bytes that will receive the converted
4-digit BCD value.

Returns

Status Symbolic Name Meaning

0 DTL_SUCCESS Operation successful
4 DTL_E_CNVT Data-conversion error
Description

Use the DTL_PUT_4BCD to accept a longword integer value in
control-coprocessor format in the range of 0 to 9999. It converts the
control-coprocessor unsigned to a 2-byte, 4-digit BCD value and places
the result in the specified 2-byte array.

C Example

unsigned status;
unsigned char untyped_data[50];
unsigned word_val,

status = DTL_PUT_4BCD (word_val, &untyped_data[10]);

B-63

Appendix B

API Library of Routines

DTL_PUT 4BCD

B-64

BASIC Example

The BASIC function code is 15.

procedure COPRO

DIM status - INTEGER
DIM bcd_buff(2) : BYTE
DIM bcd _val : INTEGER

rem * DTL_PUT_4BCD
RUN AB_BAS (15, status, bcd_val, ADDR(bcd_buff(1)))

References

DTL_GET_WORD(); DTL_GET_FLT();
DTL_GET_3BCD(); DTL_GET_4BCD();
DTL_PUT_WORD(); DTL_PUT_FLT();
DTL_PUT_3BCD();

DTL_READ W

Appendix B

API Library of Routines
DTL_READ W

Reads data from the PLC-5 programmable-controller data table to the
control-coprocessor memory.

C Syntax

#include <copro.h>

unsigned DTL_READ_W (name_.id, variable, iostat)
unsigned name_id;
void *variable;
unsigned *iostat;

Parameters

name_id

DTL_C_DEFINE returns this handle when the data item to be read
is defined.

variable

Address of a buffer that stores the data read from the data item. Ensure
the declared variable is the right type to match the data size that was
specified in DTL_C_DEFINE.

iostat

This parameter returns a final completion status. Possible completion
status values are:

Value Meaning

0 DTL_SUCCESS = operation completed successfully

27 DTL_E_NOATMPT = I/O operation not attempted; see status variable for reason
41 DTL_E_CNVT = data-conversion error

xxx® PCCC_E_xxx = operation refused by the PLC-5 programmable controller

@ See Table B.A for PCCC errors.

Returns

Status Symbolic Name Meaning

0 DTL_SUCCESS Operation successful

19 DTL_E_NOINIT DEFINE table not initialized
20 DTL_E_BADID Definition ID out of range

24 DTL_E_FAIL I/0 completed with errors

32 DTL_E_NODEF No such data item defined
157 CC_E_NOTCONNECT PLC is not connected or offline

B-65

Appendix B

API Library of Routines
DTL_READ W

Description

Use the DTL_READ_W function to read data from a PLC-5
programmable controller that is directly connected to the
control coprocessor.

This function is synchronous When this function is initiated, your
C application programs stops until the function completes or fails.

C Example

unsigned status;
unsigned machinel;
unsigned short parts1 [10];
unsigned iostat;
DTL_C_DEFINE (&machinel, “N20:36, 10, WORD, READ");
status = DTL_READ_W (machinel, &partsl, &iostat)
if (status == DTL_SUCCESS)
{
printf (“parts = %d\n”, parts1 [0]);
}
else
{
(printf (“error %d, %d on read of parts data\n”,
status,
iostat);

BASIC Example

The BASIC function code is 5.

procedure COPRO

DIM status : INTEGER
DIM fred - INTEGER
DIM rcvbuff(10) : INTEGER
DIMiostat :INTEGER

rem * DTL_READ_W - Read from N10:2 10 words into rcvbuff
RUN AB_BAS (5, status, fred, ADDR(rcvbuff), ADDR(iostat))

References

DTL_C_DEFINE(); DTL_WRITE_W();

B-66

Appendix B

API Library of Routines
DTL READ W_IDX

DTL_READ W_IDX Reads any elements of a file, one element at a time, from the PLC-5
programmable controller to the control-coprocessor memory using only
one data definition.

Important: To use this function call, you must have the versions of the
ABLIB.L and CORPRO.H files that accompany Series A Revision D
(2.20) or later of the Program Development Software. Contact Allen-
Bradley Global Technical Support Services at (216) 646-6800 if you need
these updates.

C Syntax

#include <copro.h>

unsigned DTL_READ_W_IDX (name_id, variable, iostat, index)
unsigned name_id;
void *variable;

unsigned *iostat;
unsigned index;

Parameters
name_id

DTL_C_DEFINE returns this handle when the data file to be read
is defined.

variable

Address of a buffer that stores the data read from the file. Ensure that
the declared variable is the right type to match the data size that was
specified in DTL_C_DEFINE.

iostat

This parameter returns a final completion status. Possible completion
status values are:

Value Meaning

0 DTL_SUCCESS = operation completed successfully

27 DTL_E_NOATMPT = I/O operation not attempted; see status variable for reason
4 DTL_E_CNVT = data-conversion error

xxx® PCCC_E_xxx = operation refused by the PLC-5 programmable controller

@ gSee Table B.A for PCCC errors.
index

This parameter specifies the element or structure level of the data-file
item to be read.

B-67

Appendix B

API Library of Routines
DTL_READ W_IDX

Returns

Status Symbolic Name Meaning

0 DTL SUCCESS Operation successful

19 DTL_E_NOINIT DEFINE table not initialized
20 DTL_E_BADID Definition ID out of range

24 DTL_E_FAIL I/0 completed with errors

32 DTL_E_NODEF No such data item defined
157 CC_E_NOTCONNECT PLC is not connected or offline

Description

Use the DTL_READ_W_IDX function to read a file, one element at a
time, from a PLC-5 programmable controller that is directly connected to
the control coprocessor.

This function is synchronous When this function is initiated, your
C application programs stops until the function completes or fails.

For this function to be successful, the data definition must specify the
address to the first element of the file and the number of data items
must be 1.

You can address structured data types to either the structure level or the
element level. When you address to the structure level, the data type must
be RAW.

Valid Definition Examples

DTL_C_DEFINE (&idl, “N34:0") /* specified to element O,
default 1 item */

DTL_C_DEFINE (&idl, “T4:0.pre”) /* index 0 accesses T4:0.pre; index 14
accesses T4:14.pre */

DTL_C_DEFINE (&idl, “T4:0,1,raw”) /* index 0 accesses all three elements of
T4:0 (control, preset, accumulator);
index 14 access all three elements
of T4:14 (control, preset, accumulator)*/

Invalid Definition Example

DTL_C_DEFINE (&idl, “N34:3") /* not specified to element 0 */
DTL_C_DEFINE (&idl, “N34:0,3,long”) /* number of items not 1 */

B-68

Appendix B

API Library of Routines
DTL READ W_IDX

C Example

unsigned machine;
unsigned short parts[10];
unsigned iostat;

DTL_C_DEFINE (&machine, “N20:0, 1, WORD, MODIFY");
DTL_READ_W_IDX (machine, &parts[3], &iostat, 3) /* read element N20:3 */
DTL_READ_W_IDX (machine, &parts[8], &iostat, 8) /* read element N20:8 */

BASIC Example

The BASIC function code is 20.

procedure COPRO
DIM status : INTEGER

DIMid . INTEGER

DIMiostat :INTEGER
DIM val3 . INTEGER
DIM val8 . INTEGER

rem * Define the data file

RUN AB_BAS (2, status, ADDR(id), “N10:0, 1, LONG, MODIFY”)
rem * Read N10:3 to val3

RUN AB_BAS (20, status, id, ADDR(val3), ADDR(iostat), 3)

rem * Read N10:8 to val8

RUN AB_BAS (20, status, id, ADDR(val8), ADDR(iostat), 8)

References

DTL_C_DEFINE(); DTL_WRITE_W_IDX();

B-69

Appendix B

API Library of Routines

DTL_RMW_W

DTL_RMW_W

B-70

Initiates an operation that reads a data element, modifies some of the bits,
then writes it back.

C Syntax
#include <copro.h>
unsigned DTL_RMW_W (name_id, and_mask, or_mask, iostat)
unsigned name_id;
unsigned and_mask;
unsigned or_mask;
unsigned *iostat;
Parameters

name_id

DTL_C_DEFINE returns this handle when the data item to be read and
modified is defined.

and_mask

Use the and_mask to specify the bits you want to preserve in the data
item. A “1” bit in the AND mask preserves the corresponding bit in the
data item; a “0” bit forces the corresponding bit to zero.

or_mask

Use or_mask to specify the bits you want to set in the data item.

A “1” bit in the OR mask forces the corresponding bit in the data item;
a “0” bit forces the corresponding bit unchanged. The OR mask is
applied after the AND mask.

jostat

Returns a final completion status. Possible completion status values are:

Value Meaning

0 DTL_SUCCESS = operation completed successfully

27 DTL_E_NOATMPT = I/O operation not attempted; see status variable for reason
4 DTL_E_CNVT = data-conversion error

xxx® PCCC_E_xxx = operation refused by the PLC-5 programmable controller

@ See Table B.A for PCCC errors.

Appendix B

API Library of Routines
DTL RMW_W

Returns

Status Symbolic Name Meaning

0 DTL SUCCESS Operation successful

15 DTL_E_R ONLY Data item defined as READ only

16 DTL_E_INVTYPE Data is invalid type for operation

19 DTL_E_NOINIT DEFINE table not initialized

20 DTL_E_BADID Definition ID out of range

24 DTL_E_FAIL 1/0 completed with errors

31 DTL E_TOOBIG Data item greater than maximum allowed
32 DTL_E_NODEF No such data item defined

4 DTL_E_CNVT Data-conversion error, I/O not attempted
157 CC_E_NOTCONNECT PLC is not connected or offline

Description

Use the DTL_RMW_W function to perform a read/modify/write function

on a data item. The function reads a data value, modifies the data with the
AND mask and then with the OR mask, and writes the data back to the
programmable controller.

This synchronous function cannot be used on multiple-element data
definition. The element must be a word value.

B-71

Appendix B

API Library of Routines
DTL RMW_W

C Example

/*

* Suppose there is a 16-bit “status word” in binary file 10, word 1,
* describing the current status of the machine. Bits 0 through 3 of
* this word contain a code for the “current operating mode” (0-F) of
* the machine.

*/

#define OPER_MODE_MASK OxFFFO /* last 4 bits = mode */
#define MANUAL_MODE 0x0002 /* bit 1*/

unsigned status;

unsigned data_id;

unsigned iostat;

status = DTL_C_DEFINE (&data_id, “B10:1, 1, WORD, MODIFY™");
status = DTL_RMW_W (data_id, OPER_MODE_MASK, MANUAL_MODE, &iostat);
if (status != DTL_SUCCESS)

{

printf (“Error %d %d changing to MANUAL\n", status, iostat);

exit (status);

}

BASIC Example

The BASIC function code is 7.

procedure COPRO

DIM status . INTEGER
DIM n7_name :INTEGER
DIM iostat :INTEGER
DIM and_mask :INTEGER
DIMor_mask :INTEGER

rem* DTL_RMW_W - Read/modify/write from N7:0 1 word into rcvbuff
and_mask := $2

or_mask :=$1230

RUN AB_BAS (7, status, n7_name, and_mask, or_mask, ADDR(iostat))

References

DTL_C_DEFINE(); DTL_READ_W();
DTL_WRITE_W();

B-72

Appendix B

API Library of Routines
DTL_ RMW_W_IDX

DTL RMW W IDX Initiates an operation that reads a data element of the PLC-5 programmable
- - controller, modifies some of the bits based on mask values, then writes the
data element back. This function can read and modify any elements of the
file using only one data definition.

Important: To use this function call, you must have the versions of the
ABLIB.L and CORPRO.H files that accompany Series A Revision D
(1.20) or later of the Program Development Software. Contact Allen-
Bradley Global Technical Support Services at (216) 646-6800 if you need
these updates.

C Syntax

#include <copro.h>
unsigned DTL_RMW_W_IDX (name_id, and_mask, or_mask, iostat, index)
unsigned name_id;
unsigned and_mask;
unsigned or_mask;
unsigned *iostat;
unsigned index;

Parameters

name_id

DTL_C_DEFINE returns this handle when the data file to be read and
modified is defined.

and_mask

Useand_mask to specify the bits that you want to preserve in the data.
A “1” bit in the AND mask preserves the corresponding bit in the data;
a “0” bit forces the corresponding bit to zero.

or_mask

Useor_mask to specify the bits that you want to set in the data.

A “1” bit in the OR mask forces the corresponding bit in the data;
a “0” bit forces the corresponding bit unchanged. The OR mask is
applied after the AND mask.

iostat

Returns a final completion status. Possible completion status values are:

Value Meaning

0 DTL_SUCCESS = operation completed successfully

27 DTL_E_NOATMPT = /O operation not attempted; see status variable for reason
4 DTL_E_CNVT = data-conversion error

xxx® PCCC_E_xxx = operation refused by the PLC-5 programmable controller

@ See Table B.A for PCCC errors.

B-73

Appendix B

API Library of Routines
DTL_ RMW_W_IDX

index

This parameter specifies the element or structure level of the data-file
item to be read and modified.

Returns

Status Symbolic Name Meaning

0 DTL_SUCCESS Operation successful

15 DTL_ E R ONLY Data item defined as READ only

16 DTL_E_INVTYPE Data is invalid type for operation

19 DTL_E_NOINIT DEFINE table not initialized

20 DTL_E_BADID Definition ID out of range

24 DTL_E_FAIL I/0 completed with errors

31 DTL E TOOBIG Data item greater than maximum allowed
32 DTL_E_NODEF No such data item defined

4 DTL_E_CNVT Data-conversion error, I/O not attempted
157 CC_E_NOTCONNECT PLC is not connected or offline

Description

Use the DTL_RMW_W _IDX function to perform a read/modify/write
function on a data item. This function read a data value, modifies the data
with the AND mask and then with the OR mask, and writes the data back
to the programmable controller. This function allows you to read and
modify any element of the file using only one data definition by specifying
an index to the element.

For this function to be successful, the data definition must specify the
address to the first element of the file and the number of data items
must be 1.

You cannot use this synchronous function on multiple-element data

definitions. The element must be a word value.

Valid Definition Examples

DTL_C_DEFINE (&idl, “N34:0") /* specified to element 0,
default 1 item */

B-74

Appendix B

API Library of Routines
DTL_ RMW_W_IDX

Invalid Definition Example

DTL_C_DEFINE (&idl, “N34:3") /* not specified to element 0 */
DTL_C_DEFINE (&idl, “N34:0,3,long”) /* number of items not 1 */

C Example

/*

* Suppose there are 5 16-bit “status words” in binary file 10, elements

* 0 through 4, each describing the current status of 5 machines. Bits

* 0 through 3 of each word contain a code for the “current mode” (0-F)
* of the machine. This example changes the “current mode” to a value
* of 2 without modifying bits 5-31 for machines 0 and 4.

*/

#define MODE_AND_MASK OxFFFO /* preserve bits 5-31 */

#define MODE_OR_MASK 0x0002 /* set bit 1*/

#define MAC_0 0x0000 /* machine O index */
#define MAC_2 0x0004 I* machine 4 index */
unsigned id;

unsigned iostat;

DTL_C_DEFINE (&id, “B10:0, 1, WORD, MODIFY");
DTL_RMW_W._IDX (id, MODE_AND_MASK, MODE_OR_MASK, &iostat, MAC_0);
DTL_RMW_W._IDX (id, MODE_AND_MASK, MODE_OR_MASK, &iostat, MAC_4);

BASIC Example

The BASIC function code is 22.

procedure COPRO

DIM status : INTEGER
DIM id tINTEGER
DIMiostat :INTEGER
DIM and_mask :INTEGER
DIM or_mask :INTEGER

rem * Define the data file

RUN AB_BAS (2, status, ADDR(id), “B10;), 1, LONG, MODIFY")
and_mask := $FFFO0

or_mask :=$2

RUN AB_BAS (22, status, id, and_mask, or_mask, ADDR(iostat), 0))
RUN AB_BAS (22, status, id, and_mask, or_mask, ADDR(iostat), 4))

References

DTL_C_DEFINE(); DTL_READ_W_IDX();
DTL_WRITE_W_IDX();

B-75

Appendix B

API Library of Routines
DTL SIZE

DTL_SIZE

B-76

Gets the size of memory necessary to store the contents of a data item in
control coprocessor format.

C Syntax
#include <copro.h>

unsigned DTL_SIZE (name_id, size)
unsigned name_id;
unsigned *size;

Parameters

name_id

The handle returned by DTL_C_DEFINE when the data item
was defined.

size

Size (in bytes) required for the data item that is returned. Zero is
returned if the data item is undefined.

Returns

Status Symbolic Name Meaning

0 DTL_SUCCESS Operation successful

19 DTL_E_NOINIT Definition table not initialized
20 DTL_E_BADID Definition ID out of range

32 DTL_E_NODEF No such data item defined
Description

Use DTL_SIZE to determine the amount of control-coprocessor memory
necessary to store a copy of the previously defined block of data.

Appendix B

API Library of Routines
DTL_SIZE

C Example

unsigned status;
unsigned size;
unsigned integer_file;
short *integer_data;

status = DTL_SIZE (integer_file, &size);
if (status != DTL_SUCCESS) return (status);
integer_data = (short *) malloc (size);

BASIC Example

The BASIC function code is 16.

procedure COPRO

DIM status - INTEGER
DIM n7_name :INTEGER
DIM dtlsize : INTEGER

rem* DTL_SIZE
RUN AB_BAS (16, status, n7_name, ADDR(dtlsize))

References

DTL_C_DEFINE();

B-77

Appendix B

API Library of Routines
DTL_TYPE

DTL_TYPE Gets the control-coprocessor data type of the named data.

C Syntax

#include <copro.h>

unsigned DTL_TYPE (name_id, type)
int name_id;
int *type;

Parameters

name_id

The handle returned by DTL_C_DEFINE when the data item
was defined.

type

The coded value denoting the control-coprocessor data type you
specified with DTL_C_DEFINE. On return from DTL_TYPE, the type
variable will have one of the following values:

Type:® Is: Type:® Is:
DTL_TYP_RAW no conversion DTL_TYP_LONG long (int)
DTL_TYP_BYTE char DTL_TYP_ULONG unsigned
DTL_TYP_UBYTE unsigned char DTL_TYP_FLOAT float
DTL_TYP_WORD short DTL_TYP_DOUBLE | double
DTL_TYP_UWORD unsigned short

© These symbolic names are in COPRO.H.

Returns

Status Symbolic Name Meaning

0 DTL_SUCCESS Operation successful

19 DTL_E_NOINIT Definition table not initialized
20 DTL_E_BADID Definition ID out of range

32 DTL_E_NODEF No such data item defined
Description

Use DTL_TYPE to get the code that indicates the data type you specified
when you defined the data entry with DTL_C_DEFINE.

B-78

Appendix B

API Library of Routines
DTL_TYPE

C Example

unsigned status;
int counter_id;
int data_type;

status = DTL_TYPE (counter_id, &data_type);

BASIC Example

The BASIC function code is 17.

procedure COPRO

DIM status :INTEGER
DIM n7_name :INTEGER
DIM dtltype : INTEGER

rem* DTL_TYPE
RUN AB_BAS (17, status, n7_name, ADDR(dtltype))

References

DTL_C_DEFINE();

B-79

Appendix B

API Library of Routines
DTL_UNDEF

DTL_UNDEF Deletes a data definition from the DTL data-definition table.

C Syntax
#include <copro.h>

unsigned DTL_UNDEF (name_id)
unsigned name_id;

Parameters
name_id

DTL_C_DEFINE returns this handle when the data item is defined.

Description

Use the DTL_UNDEF function to delete an entry in the data-
definition table.

Returns

Status Symbolic Name Meaning

0 DTL SUCCESS Operation successful

19 DTL E_NOINIT Definition table not initialized
20 DTL E BADID Definition ID out of range

32 DTL E_NODEF No such data item defined
C Example

unsigned status;
unsigned analog;

DTL_C_DEFINE (&analog, . . .)

status = DTL_UNDEF (analog);

B-80

Appendix B

API Library of Routines
DTL_UNDEF

BASIC Example

The BASIC function code is 3.

procedure COPRO
DIM status : INTEGER
DIM analog :INTEGER

rem * DTL_UNDEF Undefine item
RUN AB_BAS (3, status, analog)

References

DTL_C_DEFINE(); DTL_DEF_AVAIL();

B-81

Appendix B

API Library of Routines
DTL_WRITE_W

DTL_WRITE_W

B-82

Writes data from the control-coprocessor memory to the PLC-5
programmable -controller data table.

C Syntax

#include <copro.h>

unsigned DTL_WRITE_W (name_id, variable, iostat)
unsigned name_id;
void *variable;
unsigned *iostat;

Parameters

name_id

DTL_C_ DEFINE returns this handle when the data item to be written
was defined.

variable

The address of a buffer that contains the data to be written to the PLC-5
programmable controller. Ensure the declared variable is the right type
to match the data size that was specified in DTL_C_DEFINE.

iostat

Returns a final completion status. Possible completion status values are:

Value Meaning

0 DTL_SUCCESS = operation completed successfully

27 DTL_E_NOATMPT = I/O operation not attempted; see status variable for reason

xxx® PCCC_E_xxx = operation refused by the PLC-5 programmable controller
@ See Table B.A for PCCC errors.

Appendix B

API Library of Routines
DTL_WRITE_W

Returns

Status Symbolic Name Meaning
0 DTL SUCCESS Operation successful
15 DTL_E_R ONLY Data item defined as READ only
19 DTL_E_NOINIT DEFINE table not initialized
20 DTL_E_BADID Definition ID out of range
24 DTL_E_FAIL 1/0 completed with errors
32 DTL_E_NODEF No such data item defined
4 DTL_E CNVT Data-conversion error, /O not attempted
157 CC_E_NOTCONNECT PLC is not connected or offline

Description

Use the DTL_WRITE_W function to write data to the PLC-5
programmable controller directly connected to the control coprocessor.

This function is synchronous When this function is initiated, your
C application program stops until the function completes or fails.

C Example

unsigned status;
unsigned machinel;
unsigned short parts1;
unsigned iostat;

DTL_C_DEFINE (&machinel, “N30:0, 1, WORD, MODIFY");

status = DTL_WRITE_W (machinel, &partsl, &iostat)
if (status == DTL_SUCCESS)

{
printf (“parts = %d\n”, partsl);
}
else
{
(printf (“error %d, %d on read of parts data\n”,
status,
iostat);
}

B-83

Appendix B

API Library of Routines
DTL_WRITE_W

BASIC Example

The BASIC function code is 6.

procedure COPRO

DIM status : INTEGER
DIM fred - INTEGER
DIM rcvbuff(10) : INTEGER
DIMiostat :INTEGER

rem * DTL_WRITE_W - Write from rcvbuff 10 words to N10:2
RUN AB_BAS (6, status, fred, ADDR(rcvbuff), ADDR(iostat))

References

DTL_C_DEFINE(); DTL_READ_W(); DTL_RMW_W();

B-84

DTL_WRITE_W_IDX

Appendix B

API Library of Routines
DTL_WRITE_W_IDX

Writes to any elements of a file, one element at a time, from the
control-coprocessor memory to the PLC-5 programmable controller using
only one data definition.

Important: To use this function call, you must have the versions of the
ABLIB.L and CORPRO.H files that accompany Series A Revision D
(2.20) or later of the Program Development Software. Contact Allen-
Bradley Global Technical Support Services at (216) 646-6800 if you need
these updates.

C Syntax
#include <copro.h>
unsigned DTL_WRITE_W_IDX (name_id, variable, iostat, index)
unsigned name_id;
void *variable;
unsigned *iostat;
unsigned index;
Parameters

name_id

DTL_C_DEFINE returns this handle when the data file to be written
is defined.

variable

The address of a buffer that contains the data to be written to the PLC-5
programmable controller. Ensure that the declared variable is the right
type to match the data size that was specified in DTL_C_DEFINE.

iostat

Returns a final completion status. Possible completion status values are:

Value Meaning

0 DTL_SUCCESS = operation completed successfully

27 DTL_E_NOATMPT = /O operation not attempted; see status variable for reason

xxx® PCCC_E_xxx = operation refused by the PLC-5 programmable controller
® See Table B.A for PCCC errors.

index

This parameter specifies the element or structure level of the data-file
item to be written.

B-85

Appendix B

API Library of Routines
DTL_WRITE_W_IDX

Returns

Status Symbolic Name Meaning
0 DTL SUCCESS Operation successful
15 DTL_E_R ONLY Data item defined as READ only
19 DTL_E_NOINIT DEFINE table not initialized
20 DTL_E_BADID Definition ID out of range
24 DTL_E_FAIL 1/0 completed with errors
32 DTL_E_NODEF No such data item defined
4 DTL_E CNVT Data-conversion error, /O not attempted
157 CC_E_NOTCONNECT PLC is not connected or offline

Description

Use the DTL_WRITE_W_IDX function to write a file to the PLC-5
programmable controller connected directly to the control coprocessor.

This function is synchronous When this function is initiated, your
C application program stops until the function completes or fails.

To use this function, the data definition must specify the address to the first
element of the file and the number of data items must be 1.

You can address structured data types to either the structure level or the
element level. When you address to the structure level, the data type must
be RAW.

Valid Definition Examples

DTL_C_DEFINE (&idl, “N34:0") /* specified to element 0,
default 1 item */

DTL_C_DEFINE (&idl, “T4:0.pre”) /* index 0 accesses T4:0.pre; index 14
accesses T4:14.pre */

DTL_C_DEFINE (&idl, “T4:0,1,raw”) /* index O accesses all three elements of
T4:0 (control, preset, accumulator);
index 14 access all three elements
of T4:14 (control, preset, accumulator)*/

B-86

Appendix B

API Library of Routines

Invalid Definition Example

DTL_C_DEFINE (&idl, “N34:3") /* not specified to element 0 */
DTL_C_DEFINE (&idl, “N34:0,3,long”) /* number of items not 1 */

C Example

unsigned machine;
unsigned short parts[10];
unsigned iostat;

DTL_C_DEFINE (&machine, “N20:0, 1, WORD, MODIFY™);
DTL_WRITE_W_IDX (machine, &parts[3], &iostat, 3) /* read element N20:3 */
DTL_WRITE_W_IDX (machine, &parts[8], &iostat, 8) /* read element N20:8 */

BASIC Example

The BASIC function code is 21.
procedure COPRO

DIM status : INTEGER

DIM id : INTEGER

DIM iostat . INTEGER

DIM val3 . INTEGER

DIM val8 . INTEGER

rem * Define the data file

RUN AB_BAS (2, status, ADDR(id), “N10:0, 1, LONG, MODIFY”)
rem * Write val3 to N10:3

RUN AB_BAS (21, status, id, ADDR(val3), ADDR(iostat), 3)

rem * Write val8 to N10:8

RUN AB_BAS (21, status, id, ADDR(val8), ADDR(iostat), 8)

References

DTL_C_DEFINE(); DTL_READ_W_IDX(); DTL_RMW_W_IDX():;

B-87

Appendix B

API Library of Routines

MSG_CLR MASK

MSG_CLR_MASK

B-88

Clears the bit associated with the specified message number.

C Syntax
#include <copro.h>

unsigned MSG_CLR_MASK (mask,msg_num)
unsigned *mask;
unsigned msg_num;

Parameters
mask

Address of the read or write mask used with the MSG_WAIT function.
This function will reset the bit corresponding to the message number.

msg_num

Number of the PLC-5 programmable controller message (0-31).

Returns
Status Symbolic Name Meaning
0 CC_SUCCESS Operation successful

133 CC_E_BAD _MSGID | Message number invalid

Description

Use the MSG_CLR_MASK function to clear bits in the message
read/write masks.

C Example

See MSG_WAIT on page B-102 for a complete example of asynchronous
message processing.

Appendix B

API Library of Routines
MSG_CLR_MASK

BASIC Example

The BASIC function code is 44.

DIM status . INTEGER
DIM msg_w_mask . INTEGER

rem * MSG_CLR_MASK - clear bit in msg_w_mask for message 0
RUN AB_BAS (44,status,ADDR(msg_w_mask),0)

References

MSG_READ_HANDLER(); MSG_WAIT();
MSG_WRITE_HANDLER():

B-89

Appendix B

API Library of Routines
MSG_READ_HANDLER

MSG_READ_HANDLER

B-90

Handles a PLC-5 programmable-controller message-read instruction.

C Syntax
#include <copro.h>
unsigned MSG_READ_HANDLER (variable,buff_size,msg_num,
items,timeout, CC_type, plc_type, iostat)
short *variable;
unsigned buf_size;
unsigned msg_num;
unsigned items;
unsigned timeout;
unsigned cc_type;
unsigned plc_type;
int *iostat;

Parameters
variable
Address of a buffer that has the data to be read.
buff_size
Size of the read buffer in bytes.
msg_num
Number of the PLC-5 programmable controller message (0-31).
items

Number of data items to be read by the PLC-5 programmable controller.
The number and size of items cannot be greater than 240 bytes—e.g.,
maximum of 60 floating-point values of 4 bytes each = 240 bytes.

timeout

Timeout value in seconds. When using a value of CC_FOREVER
(defined in COPRO.H), this function will keep the read handler posted
until a message has been received.

cc_type

Appendix B

API Library of Routines
MSG_READ_HANDLER

This is the data type of the control-coprocessor data buffer.

Possible values are:

Value Symbolic Name® “C” Type

0 CC_RAW no conversion
1 CC_BYTE char

2 CC_UBYTE unsigned char
3 CC_WORD short

4 CC_UWORD unsigned short
5 CC_LONG long (int)

6 CC_ULONG unsigned

7 CC_FLOAT float

8 CC_DOUBLE double

@

plc_type

This is the data type of the PLC-5 data-table area.

These symbolic names are in COPRO.H.

Value Symbolic Name® “C” Type
3 PLC_WORD short
7 PLC_FLOAT float

@ These symbolic names are in COPRO.H.

iostat

Possible values are:

This parameter returns a final completion status. Possible completion

status values are:

Value Meaning

0 CC_SUCCESS = operation completed successfully

101 CC_PENDING = /O operation in progress

118 CC_E_TIME = operation did not complete in time

127 CC_E_NOATMPT = operation not attempted; see status value for reason
141 CC_E_CNVT = data-conversion error

182 CC_E_MSG_ABORT = message aborted by CC_MKILL

xxx® PCCC_E_xxx = operation refused by the PLC-5 programmable controller

@ gSee Table B.A for PCCC errors.

B-91

Appendix B

API Library of Routines
MSG_READ_HANDLER

Returns

Status Symbolic Name Meaning

0 CC_SUCCESS Operation successful

133 CC_E_BAD_MSGID Message number invalid

157 CC_E_NOTCONNECT | PLC is not connected or offline
160 CC_E INV_TO Invalid timeout value

162 CC_E_INV_CTYPE Invalid coprocessor data type
163 CC_E_INV_PTYPE Invalid PLC-5 data type

181 CC_E_MSGPEND Message already pending
182 CC_E_MSG_ABORT Message aborted

190 CC_E_SIZE Invalid size for operation

191 CC_E_TOOSMALL Size of buffer too small
Description

Use the MSG_READ_HANDLER function to initiate the processing of
unsolicited message read instructions from the PLC-5 programmable
controller. This function puts an entry in the Message Control Table
(MCT) for the requested message number (0-31). When the PLC-5
programmable controller executes that message number, data from the
PLC-5 programmable controller is transferred to the specified user buffer.

This function is asynchronous. When this function is initiated, control is
returned to the application. Use MSG_WAIT to monitor/complete the 1/0
operation. For the synchronous version of this command, see
MSG_READ_W_HANDLER.

C Example

See MSG_WAIT on page B-102 for a complete example of asynchronous
message processing.

B-92

DIM status
DIM iostat
DIM msgrbuf(5)

Appendix B

API Library of Routines
MSG_READ_HANDLER

BASIC Example

The BASIC function code is 41.
. INTEGER

- INTEGER

:INTEGER

rem * MSG_READ_HANDLER - Set up handler to allow for an asynchronous message

rem *
rem *
rem *
rem *
rem *
rem *
rem *

read of msgrbuf. This function will return to the

user before completion of the /0. MSG_WAIT must be
called to complete the I/O process. Size of buffer

is 20 bytes, message number is 0, number of items to
read is 5, the timeout value is 6 seconds, the
coprocessor data type is integer, the plc data type

is short and iostat gets the I/O completion code.

RUN AB_BAS (41,status,ADDR(msgrbuf(1)),20,0,5,6,5,3,ADDR(iostat))

References

MSG_WRITE_HANDLER(); MSG_WAIT(); MSG_CLR_MASK();
MSG_SET_MASK(); MSG_TST_MASK(); MSG_ZERO_MASK();

Also see synchronous functions:
MSG_WRITE_W_HANDLER(); MSG_READ_W_HANDLER();

B-93

Appendix B

API Library of Routines

MSG_READ_W_HANDLER

MSG_READ W _HANDLER

B-94

Handles a PLC-5 programmable-controller generated message-
read instruction.

C Syntax

#include <copro.h>

unsigned MSG_READ_W_HANDLER (variable,buff_size,msg_num,

items,timeout,cc_type,plc_type,
iostat)

short *variable;

unsigned buf_size;

unsigned msg_num;

unsigned items;

unsigned timeout;

unsigned cc_type;

unsigned plc_type;

int *iostat;

Parameters
variable
Address of a buffer that has the data to be read.
buff_size
Size of the read buffer in bytes.
msg_num
Number of the PLC-5 programmable controller message (0-31).
items

Number of data items to be read by the PLC-5 programmable controller.
The number and size of items cannot be greater than 240 bytes—e.g.,
maximum of 60 floating-point values of 4 bytes each = 240 bytes.

timeout

Timeout value in seconds. A value of CC_FOREVER (defined in
COPRO.H) will not return until the message has been processed.

cc_type

Appendix B

API Library of Routines
MSG_READ_W_HANDLER

This is the data type of the control-coprocessor data buffer.

Possible values are:

Value Symbolic Name® “C” Type

0 CC_RAW no conversion
1 CC_BYTE char

2 CC_UBYTE unsigned char
3 CC_WORD short

4 CC_UWORD unsigned short
5 CC_LONG long (int)

6 CC_ULONG unsigned

7 CC_FLOAT float

8 CC_DOUBLE double

@

plc_type

This is the data type of the PLC-5 data table area.

These symbolic names are in COPRO.H.

Value Symbolic Name® “C” Type
3 PLC_WORD short
7 PLC_FLOAT float

@ These symbolic names are in COPRO.H.

iostat

Possible values are:

This parameter returns a final completion status. Possible completion

status values are:

Value Meaning

0 CC_SUCCESS = operation completed successfully

118 CC_E_TIME = operation did not complete in time

127 CC_E_NOATMPT = operation not attempted; see status value for reason
141 CC_E_CNVT = data-conversion error

182 CC_E_MSG_ABORT = message aborted by CC_MKILL

xxx® PCCC_E_xxx = operation refused by the PLC-5 programmable controller

@ See Table B.A for PCCC errors.

B-95

Appendix B

API Library of Routines

MSG_READ_W_HANDLER

B-96

Returns

Status Symbolic Name Meaning

0 CC_SUCCESS Operation successful

124 CC_E_FAIL I/0O completed with errors
133 CC_E_BAD_MSGID Message number invalid

157 CC_E_NOTCONNECT | PLC is not connected or offline
160 CC_E_INV_TO Invalid timeout value

162 CC_E_INV_CTYPE Invalid coprocessor data type
163 CC_E_INV_PTYPE Invalid PLC-5 data type

181 CC_E_MSGPEND Message already pending
182 CC_E_MSG_ABORT Message aborted

190 CC_E_SIZE Invalid size for operation

191 CC_E_TOOSMALL Size of buffer too small
Description

Use the MSG_READ_W_HANDLER function to handle unsolicited
message read instructions from the PLC-5 programmable controller. This
function puts an entry in the Message Control Table (MCT) for the
requested message number (0-31). When the PLC-5 programmable
controller executes that message number, data from the user-specified
buffer is transferred to the PLC-5 programmable controller.

This function is synchronous. When this function is initiated, the
application program stops until the function completes or fails. For the
asynchronous version of this command see MSG_READ_HANDLER.

Appendix B

API Library of Routines
MSG_READ_W_HANDLER

C Example
short variable [4] /* buffer to store read data */
unsigned timeout = 45; [* 45 second timeout */
unsigned msgnum = 10; [* plc message number 10 */
unsigned cc_type = 3; [* CC_WORD = 3; */
unsigned plc_type = 3; /* PLC_WORD = 3;*/
unsigned items = 4; /* 4 words of data to be read */
int iostat; /* iostatus return value */
int rtn_val; /* function return value */

variable [0] =
variable [1]
|
]

1

9;

variable [2] = 9;

variable [3] = 2;

rtn_val = MSG_READ_W_HANDLER (variable, sizeof (variable), msgnum, items,
timeout, cc_type, PLC_type, &iostat);

BASIC Example

The BASIC function code is 40.
DIM status :INTEGER
DIM iostat . INTEGER
DIM msgrbuf(5) - INTEGER

rem * MSG_READ_W_HANDLER - Set up handler to allow for a synchronous message

rem * read of msgrbuf. This function will wait for

rem * completion of the I/O before returning to the user.
rem * Size of buffer is 20 bytes, message number is 0,
rem * number of items to read is 5, the timeout value is
rem * 6 seconds, the coprocessor data type is integer,
rem * the plc data type is short and iostat gets the /O
rem * completion code.

RUN AB_BAS (40,status,ADDR(msgrbuf(1)),20,0,5,6,5,3,ADDR(iostat))

References

MSG_WRITE_W_HANDLER();

Also see asynchronous functions
MSG_READ_HANDLER(); MSG_WRITE_HANDLER();

B-97

Appendix B

API Library of Routines

MSG_SET MASK

MSG_SET_MASK

B-98

Sets the bit associated with the specified message number.

C Syntax
#include <copro.h>

unsigned MSG_SET_MASK (mask,msg_num)
unsigned *mask;
unsigned msg_num;

Parameters
mask

Address of the read or write mask used with the MSG_WAIT function.
This function will set the bit corresponding to the message number.

msg_num

Number of the PLC-5 programmable-controller message (0-31).

Returns
Status Symbolic Name Meaning
0 CC_SUCCESS Operation successful

133 CC_E_BAD _MSGID | Message number invalid

Description

Use the MSG_SET_MASK function to set bits in the message
read/write masks.

C Example

See MSG_WAIT on page B-102 for a complete example of asynchronous
message processing.

Appendix B

API Library of Routines
MSG_SET_MASK

BASIC Examples

The BASIC function code is 45.

DIM status . INTEGER
DIM msg_w_mask . INTEGER

rem * MSG_SET_MASK - set bit in msg_w_mask for message 2
RUN AB_BAS (45,status,ADDR(msg_w_mask),2)

References
MSG_READ_HANDLER(); MSG_WRITE_HANDLER();

MSG_WAIT(); MSG_CLR_MASK(); MSG_TST_MASK();
MSG_ZERO_MASK();

B-99

Appendix B

API Library of Routines
MSG_TST _MASK

MSG_TST_MASK Tests the bit associated with the specified message number.

C Syntax
#include <copro.h>

status = MSG_TST_MASK (mask,msg_num)
unsigned *mask;
unsigned msg_num;

Parameters

mask

Address of the read or write mask used with the MSG_WAIT function.
This function will test the bit corresponding to the message number.

msg_num

Number of the PLC-5 programmable-controller message (0-31).

Returns

Value Meaning

1 Returns 1 if the corresponding bit is set
0 Returns 0 if the corresponding bit is reset or msg_num is not 0-31
Description

Use the MSG_TST_MASK function to test bits in the message
read/write masks.

C Example

See MSG_WAIT on page B-102 for a complete example of asynchronous
message processing.

B-100

Appendix B

API Library of Routines
MSG_TST_MASK

BASIC Example

The BASIC function code is 46.

DIM status . INTEGER
DIM msg_w_mask . INTEGER

rem * MSG_TST_MASK - test bit in msg_w_mask for message 1
RUN AB_BAS (46,status,ADDR(msg_w_mask),1)

References
MSG_READ_HANDLER(); MSG_WRITE_HANDLER();

MSG_WAIT(); MSG_SET_MASK(); MSG_CLR_MASK();
MSG_ZERO_MASK();

B-101

Appendix B

API Library of Routines
MSG_WAIT

MSG_WAIT

B-102

Wait for one or more messages to complete.

C Syntax
#include <copro.h>

unsigned MSG_WAIT (r_mask,w_mask,sync,
r_rslt_mask,w_rslt_mask)
unsigned r_mask;
unsigned w_mask;
unsigned sync;
unsigned *r_rslt_mask;
unsigned *w_rslt_mask;

Parameters

Important: A bit set in the result mask indicates that the message is

completed; however, it does not indicate that the operation completed
without error. You must check the final completion status of each 1/O
operation to verify that no error occurred.

r_mask

Bit map of the requested read message instructions. Bit O = message O;
bit 31 = message 31. If the bit is set, this function checks for
completion of the message.

w_mask

Bit map of the requested write message instructions. Bit 0 = message O;
bit 31 = message 31. If the bit is set, this function checks for
completion of the message.

sync

Use this parameter to specify if the function will return immediately (0)
if none of the requested messages have completed or if the function
will wait (1) for at least one message to complete before returning to
the user.

r_rslt_mask

Bit map of the results from the requested read message instructions.
Bit 0 = message 0; bit 31 = message 31. If the bit is set, this message
has completed 1/O or has timed out.

@_sysedit: equ 1

Appendix B

API Library of Routines
MSG_WAIT

w_rslt_mask

Bit map of the results from the requested write message instructions.
Bit 0 = message 0; bit 31 = message 31. If the bit is set, this message
has completed 1/O or has timed out.

Returns

Status Symbolic Name Meaning

0 ‘ CC_SUCCESS Operation successful
Description

Use MSG_WAIT to wait for one or more asynchronous message
operations to complete. MSG_WAIT will check for the completion of any
combination of pending read/write message numbers. The message
numbers are encoded in a read and write mask. The corresponding
message entry is checked for I/O completion. If the message has
completed, the iostat entry for that message is updated and the
corresponding bit in the read/write result mask is set. If none of the
requested messages have completed 1/0O and the sync parameter is 0, this
function will return immediately to the caller (asynchronous).

Otherwise, this function will wait until at least one of the requested
messages has completed.

Important: If both r_mask and w_mask are 0 or if none of the messages
for which bits are set were requested, the calling process will wait forever
(only if sync=1).
C Example

[* Edition 1. */

@_sysattr: equ 0x8000 /* Revision 00 (re-entrant 0x80 << 8 + revision 00) */

#include
main ()

{

<copro.h>

int read_var,write_var,one_shot,iostat,status;
unsigned rm,wm,ret_rm,ret_wm;

read_var =1;

one_shot = 42;

CC_INIT(); [* initialize copro */

status = MSG_ZERO_MASK(&rm); /* clear out read and write masks */

status = MSG_ZERO_MASK(&wm);
status = MSG_SET_MASK(&rm,0); /* wait for read msg 0 & 1, write msg 1 */
status = MSG_SET_MASK(&rm,1);
status = MSG_SET_MASK(&wm,1);

[* post initial message handlers */

status = MSG_READ_HANDLER (&one_shot, sizeof (one_shot), 1, 1, 45,

CC_LONG, PLC_WORD, &iostat);

status = MSG_READ_HANDLER (&read_var, sizeof (read_var), 0, 1, 45,

CC_LONG, PLC_WORD, &iostat);

B-103

Appendix B

API Library of Routines
MSG_WAIT

status = MSG_WRITE_HANDLER (&write_var, sizeof (write_var), 1, 1, 45,
CC_LONG, PLC_WORD, &iostat);
while (1)
{
status = MSG_WAIT (rm,wm,1,&ret_rm,&ret_wm); /* wait for either message */
if (MSG_TST_MASK (&ret_rm,1)) /* read msg 1 completed - one_shot */
{
printf ("One shot data was read\n”);
status = MSG_CLR_MASK(&rm,1); [* dont wait for it any more */
}
if (MSG_TST_MASK (&ret_rm,0)) /* read msg 0 completed */
{
printf ("Read message 0 occurred\n”);
status = MSG_READ_HANDLER (&read_var, sizeof (read_var), 0, 1, 45,
CC_LONG, PLC_WORD, &iostat);
}
if (MSG_TST_MASK (&ret_wm,1)) [* write msg 1 completed */
{
printf ("Write message 1 occurred\n”);
status = MSG_WRITE_HANDLER (&write_var, sizeof (write_var), 1, 1,
45, CC_LONG, PLC_WORD, &iostat);

}
}
}

BASIC Example
The BASIC function code is 48.

DIM status INTEGER

DIM iostat : INTEGER

DIM rm :INTEGER

DIM wm : INTEGER

DIM ret_rm - INTEGER

DIM ret_wm 1 INTEGER

rem * MSG_WAIT - wait for completion of messages based on bit pattern

rem * in rm (read mask) and wm (write mask). The value 1
rem * indicates that this function will wait until at least

rem * one of the requested messages is complete. The results
rem * of the wait are stored in ret_rm (read) and ret_wm (write).

RUN AB_BAS (48,status,rm,wm,1,ADDR(ret_rm),ADDR(ret_wm))

References

MSG_READ_HANDLER(); MSG_WRITE_HANDLER);
MSG_SET_MASK(); MSG_CLR_MASK(); MSG_TST_MASK();

MSG_ZERO_MASK();

B-104

MSG_WRITE_HANDLER

Appendix B

API Library of Routines
MSG_WRITE_HANDLER

Handles a PLC-5 programmable-controller message-write instruction.

C Syntax
#include <copro.h>

unsigned MSG_WRITE_HANDLER (variable,buff_size,msg_num,

items,timeout,CC_type,plc_type,
iostat)

short *variable;

unsigned buf_size;

unsigned msg_num;

unsigned items;

unsigned timeout;

unsigned cc_type;

unsigned plc_type;

int *jostat;

Parameters
variable
Address of a buffer that stores the write data.
buff_size
Size of the write buffer in bytes.
msg_num
Number of the PLC-5 programmable-controller message (0-31).
items

Number of data items to be written by the PLC-5 programmable

controller. The number and size of the items cannot be greater than
234 bytes—e.g., maximum of 58 floating-point values of 4 bytes each
are< 234 hytes.

timeout

Timeout value in seconds. When using a value of CC_FOREVER
(defined in COPRO.H), this function keeps the write handler posted
until a message has been received.

B-105

Appendix B

API Library of Routines
MSG_WRITE_HANDLER

cc_type

This is the data type of the control coprocessor’s data buffer.
Possible values are:

Value Symbolic Name® “C” Type

0 CC_RAW no conversion
1 CC BYTE char

2 CC_UBYTE unsigned char
3 CC_WORD short

4 CC_UWORD unsigned short
5 CC_LONG long (int)

6 CC_ULONG unsigned

7 CC_FLOAT float

8 CC_DOUBLE double

@

These symbolic names are in COPRO.H.
plc_type

This is the data type of the PLC-5 programmable-controller data-table
area. Possible values are:

Value Symbolic Name® “C” Type
3 PLC_WORD short
7 PLC_FLOAT float
@ These symbolic names are in COPRO.H.

iostat

This parameter returns a final completion status. Possible completion
status values are:

Value Meaning

0 CC_SUCCESS = operation completed successfully
101 CC_PENDING = /O operation in progress
118 CC_E_TIME = operation did not complete in time

127 CC_E_NOATMPT = operation not attempted; see status value for reason
141 CC_E_CNVT = data-conversion error

182 CC_E_MSG_ABORT = message aborted by CC_MKILL

xx® PCCC_E_xxx = operation refused by the PLC-5 programmable controller

@ See Table B.A for PCCC errors.

B-106

Appendix B

API Library of Routines
MSG_WRITE_HANDLER

Returns

Status Symbolic Name Meaning

0 CC_SUCCESS Operation successful

133 CC_E_BAD_MSGID Message number invalid

157 CC_E_NOTCONNECT | PLC is not connected or offline
160 CC_E_INV_TO Invalid timeout value

162 CC_E_INV_CTYPE Invalid coprocessor data type
163 CC_E_INV_PTYPE Invalid PLC-5 data type

181 CC_E_MSGPEND Message already pending
182 CC_E_MSG_ABORT Message aborted

190 CC_E_SIZE Invalid size for operation

191 CC_E_TOOSMALL Size of buffer too small
Description

Use the MSG_WRITE_HANDLER function to initiate the processing of
unsolicited message write instructions from the PLC-5 programmable
controller. This function puts an entry in the Message Control Table
(MCT) for the requested message number (0-31). When the PLC-5
programmable controller executes that message number, data from the

PLC-5 programmable controller is transferred to the specified user buffer.

This function is asynchronous. When this function is initiated, control is
returned to the application. Use MSG_WAIT to monitor/complete the /O
operation. For the synchronous version of this command see
MSG_WRITE_W_HANDLER.

C Example

See MSG_WAIT on page B-102 for a complete example of asynchronous
message processing.

B-107

Appendix B

API Library of Routines
MSG_WRITE_HANDLER

BASIC Example

The BASIC function code is 43.
DIM status . INTEGER
DIM iostat . INTEGER
DIM msgwbuf(5) - INTEGER

rem * MSG_WRITE_W_HANDLER - Set up handler to allow for an asynchronous message

rem * write of msgwbuf. This function will return to the

rem * user befor completion of the 1/0. MSG_WAIT must be
rem * called to complete the I/O process. Size of buffer
rem * is 20 bytes, message number is 0, umber of items
rem * to read is 5, the timeout value is 6 seconds, the

rem * coprocessor data type is integer, the plc data type
rem * is short and iostat gets the I/O completion code.

RUN AB_BAS (43,status,ADDR(msgwbuf(1)),20,1,5,6,5,3,ADDR(iostat))

References

MSG_READ_HANDLER(); MSG_WAIT(); MSG_CLR_MASK();
MSG_SET_MASK(); MSG_TST_MASK(); MSG_ZERO_MASK();

Also see synchronous functions:
MSG_WRITE_W_HANDLER(); MSG_READ_W_HANDLER();

B-108

MSG_WRITE_W_HANDLER

Appendix B

API Library of Routines
MSG_WRITE_W_HANDLER

Handles a PLC-5 programmable-controller generated
message-write instruction.

C Syntax
#include <copro.h>
unsigned MSG_WRITE_W_HANDLER (variable,buff_size,msg_num,
items,timeout,cc_type,plc_type,iostat)
short *variable;
unsigned buff_size;
unsigned msg_num;
unsigned items;
unsigned timeout;
unsigned cc_type;
unsigned plc_type;
int *jostat;

Parameters
variable
Address of a buffer that stores the write data.
buff_size
Size of the write buffer in bytes.
msg_num
Number of the PLC-5 programmable-controller message (0-31).
items

Number of data items to be written by the PLC-5 programmable
controller. The number and size of the items cannot be greater than
234 bytes—e.g., maximum of 58 floating-point values of 4 bytes each
are< 234 bytes.

timeout

Timeout value in seconds. A value of CC_FOREVER (defined in
COPRO.H) will not return until the message has been processed.

B-109

Appendix B

API Library of Routines
MSG_WRITE_W_HANDLER

cc_type

This is the data type of the control-coprocessor’s data buffer.
Possible values are:

Value Symbolic Name® “C” Type

0 CC_RAW no conversion
1 CC BYTE char

2 CC_UBYTE unsigned char
3 CC_WORD short

4 CC_UWORD unsigned short
5 CC_LONG long (int)

6 CC_ULONG unsigned

7 CC_FLOAT float

8 CC_DOUBLE double

@

These symbolic names are in COPRO.H.
plc_type

This is the data type of the PLC-5 programmable-controller data-table
area. Possible values are:

Value Symbolic Name® “C” Type
3 PLC_WORD short
7 PLC_FLOAT float
@ These symbolic names are in COPRO.H.

iostat

This parameter returns a final completion status. Possible completion
status values are:

Value Meaning

0 CC_SUCCESS = operation completed successfully

118 CC_E_TIME = operation did not complete in time

127 CC_E_NOATMPT = operation not attempted; see status value for reason
141 CC_E_CNVT = data-conversion error
182 CC_E_MSG_ABORT = message aborted by CC_MKILL

@

PCCC_E_xxx = operation refused by the PLC-5 programmable controller
© See Table B.A for PCCC errors.

B-110

Appendix B

API Library of Routines
MSG_WRITE_W_HANDLER

Returns

Status Symbolic Name Meaning

0 CC_SUCCESS Operation successful

124 CC_E_FAIL I/0O completed with errors
133 CC_E_BAD_MSGID Message ID out of range

157 CC_E_NOTCONNECT | PLC is not connected or offline
160 CC_E_INV_TO Invalid timeout value

162 CC_E_INV_CTYPE Invalid coprocessor data type
163 CC_E_INV_PTYPE Invalid PLC-5 data type

181 CC_E_MSGPEND Message already pending
182 CC_E_MSG_ABORT Message aborted

190 CC_E_SIZE Invalid size for operation

191 CC_E_TOOSMALL Size of buffer too small

Description

Use the MSG_WRITE_W_HANDLER function to initiate the processing
of unsolicited message-write instructions from the PLC-5 programmable
controller. This function puts an entry in the Message Control Table
(MCT) for the requested message number (0-31). When the PLC-5
programmable controller executes that message number, data from the
PLC-5 programmable controller is transferred to the specified user buffer.

This function is synchronous. When this function is initiated, the
application program stops until the function completes or fails. For the
asynchronous version of this command, see MSG_WRITE_HANDLER.

C Example

/* buffer to receive write data */
[* 45 second timeout */
[* plc message number 10 */
[* CC_WORD = 3; */
[* PLC_WORD = 3; */
/* 4 words of data to be written by PLC-5 */
[* iostatus return value */
/* function return value */

short variable [4]
unsigned timeout = 45;
unsigned msgnum = 10;
unsigned cc_type = 3;
unsigned plc_type = 3;
unsigned items = 4;

int iostat;

int rtn_val;

rtn_val = MSG_WRITE_W_HANDLER (&variable, sizeof (variable), msgnum, items,
timeout, cc_type, PLC_type, &iostat);

B-111

Appendix B

API Library of Routines
MSG_WRITE_W_HANDLER

BASIC Example

The BASIC function code is 42.
DIM status . INTEGER
DIM iostat . INTEGER
DIM msgwbuf(5) - INTEGER

rem * MSG_WRITE_W_HANDLER - Set up handler to allow for a synchronous message

rem * write of msgwbuf. This function will wait for

rem * completion of the I/O before returning to the user.
rem * Size of buffer is 20 bytes, message number is 0,
rem * number of items to read is 5, the timeout value is
rem * 6 seconds, the coprocessor data type is integer,
rem * the plc data type is short and iostat gets the /O
rem * completion code.

RUN AB_BAS (42,status,ADDR(msgwbuf(1)),20,1,5,6,5,3,ADDR(iostat))

References

MSG_READ_W_HANDLER();

Also see asynchronous functions
MSG_READ_HANDLER(); MSG_WRITE_HANDLER();

B-112

Appendix B

API Library of Routines
MSG_ZERO_MASK

MSG_ZERO_MASK Zeros all bits in the specified mask.

C Syntax
#include <copro.h>

unsigned MSG_ZERO_MASK (mask)
unsigned *mask;

Parameters
mask

This is the address of the read or write mask used with the MSG_WAIT
function. This function will reset all bits in the mask.

Returns

Status Symbolic Name Meaning

0 ‘ CC_SUCCESS Operation successful
Description

Use the MSG_ZERO_MASK function to zero bits in the message
read/write masks.

C Example

See MSG_WAIT on page B-102 for a complete example of asynchronous
message processing.

B-113

Appendix B

API Library of Routines
MSG_ZERO_MASK

BASIC Example

The BASIC function code is 47.

DIM status . INTEGER
DIM msg_r_mask . INTEGER

rem * MSG_ZERO_MASK - zero out msg_r_mask
RUN AB_BAS (47,status,ADDR(msg_r_mask))

References
MSG_READ_HANDLER(); MSG_WRITE_HANDLER();

MSG_WAIT(); MSG_SET_MASK(); MSG_CLR_MASK();
MSG_TST_MASK();

B-114

TAG_DEF_AVAIL

Appendix B

API Library of Routines
TAG_DEF_AVAIL

Returns the number of TAG definitions available in the TAG table.

C Syntax
#include <copro.h>

unsigned TAG_DEF_AVAIL ()

Parameters

Returns

Value Meaning
XX ‘ The number of TAG definitions available in the TAG table

Description

Use TAG_DEF_AVAIL to determine the number of TAG definitions
available in the system’s TAG table. The function calculates the difference
between the number of entries defined in the online utility and the number
of successful TAG definitions made using TAG_DEFINE.

C Example

unsigned avail_val,
avail_val = TAG_DEF_AVAIL ();

BASIC Example

The BASIC function code is 63.

References

TAG_DEFINE(); TAG_UNDEF(); TAG_LINK();
TAG_GLOBAL_UNDEF();

B-115

Appendix B

API Library of Routines

TAG_DEFINE

TAG_DEFINE

B-116

Adds an entry to the control-coprocessor TAG table.

C Syntax
#include <copro.h>
unsigned TAG_DEFINE (name_id,tag_addr,
tag_name,tag_size,access)
unsigned *name_id;
unsigned tag_addr;
unsigned char *tag_name;
unsigned tag_size;
unsigned char access;
Parameters

name_id

Name_id is used to return a handle assigned by the TAG library to the
TAG name.

tag_addr
Pointer to the start of the user’s tagged area.
tag_name

Specifies the name of the user’'s TAG. This is a null-terminated
ASCII string of up to 9 characters. The TAG name can contain the
following characters: A-Z, a-z, 0-9, and _. The first character
must be alphabetic.

tag_size

Specifies the number of consecutive bytes starting at the tag_addr to be
included in the tagged area. This number must B40.

access

Specifies either READ or READ/WRITE access to the tagged area by
other processes. Possible values are:

Value Symbolic Name® Access

0 TG_READ Only the process that created the TAG can modify it;
other processes can only READ the TAG
1 TG_MODIFY Any process can READ or modify the TAG

@ These symbols are in COPRO.H.

Appendix B

API Library of Routines
TAG_DEFINE

Returns

Value Symbolic Name Meaning

0 CC_SUCCESS Operation successful

131 CC_E_TOOBIG Data item is greater than maximum allowed
175 CC_E_BADTAG Invalid TAG name

177 CC_E TAGFULL | TAG table s full

184 CC_E DUP Duplicate TAG

186 CC_E_BADACC | Bad value for TAG access

Description

Use TAG_DEFINE to place a TAG name entry into the TAG table. The
TAG name is a symbolic reference to the user’s designated data area. The
TAG_DEFINE routine also returns a handle with which the calling task

can refer to the TAG area on subsequent TAG_ calls. This handle is an
offset into the TAG table. This makes subsequent access to the table faster
than doing a symbolic name search.

When a process defines a TAG name, a pointer referencing the tagged
memory is stored in the TAG table. If the process that defined the TAG
aborts or is terminated, the memory referenced by the TAG pointer is
returned to the free memory pool. The TAG pointer still exists in the TAG
table, but that memory no longer addresses the TAG and may contain
invalid data.

must not terminate if that TAG is to remain valid.
To correctly remove a TAG, use the TAG_UNDEF
or TAG_GLOBAL_UNDEF function or reset the
coprocessor module.

e ATTENTION: A process that creates any TAG

C Example

unsigned off;

unsigned fred,;

unsigned status;

status = TAG_DEFINE
(&off,&fred,“Fred”,sizeof(fred), TG_MODIFY);

B-117

Appendix B

API Library of Routines
TAG_DEFINE

B-118

BASIC Example

The BASIC function code is 60.

DIM status " INTEGER
DIM tag_id - INTEGER
DIM george 1 INTEGER

rem * TAG_DEFINE - Define a tag to variable george with a symbolic
rem * name George. The size of george is 4 bytes.
RUN AB_BAS (60,status,ADDR(tag_id),ADDR(george),“George”,4,1)

References

TAG_UNDEF(); TAG_DEF_AVAIL(); TAG_LINK();
TAG_GLOBAL_UNDEF();

TAG_GLOBAL_UNDEF

Appendix B

API Library of Routines
TAG_GLOBAL_UNDEF

Removes a TAG or TAGs from the TAG table defined by any
calling process.

C Syntax
#include <copro.h>

unsigned TAG_GLOBAL_UNDEF (tag)
unsigned tag;
or
char *tag;

Parameters
tag

Use to access the TAG table. This can be either the symbolic TAG or
the handle returned from a TAG_LINK or TAG_DEFINE call. A value
of CC_ALLTAGS (defined in COPRO.H) will remove all TAGs defined
in the TAG table.

Returns

Value Symbolic Name Meaning

0 CC_SUCCESS Operation successful

120 CC_E_BADID TAG define ID out of range
176 CC_E_NOTAG TAG not found

Description

Use the TAG_UNDEF function to remove a TAG or TAGs from the
TAG table.

C Example

unsigned status;
status = TAG_GLOBAL_UNDEF (“Fred");

B-119

Appendix B

API Library of Routines
TAG_GLOBAL_UNDEF

BASIC Example

The BASIC function code is 62.
DIM status INTEGER

rem * TAG_GLOBAL_UNDEF - undefine the tag “steps” created by another process
RUN AB_BAS (62,status,"steps”)

References

TAG_DEFINE(); TAG_DEF_AVAIL(); TAG_LINK();
TAG_GLOBAL_UNDEF();

B-120

TAG_LINK

Appendix B

API Library of Routines
TAG_LINK

Gets the handle from TAG name.

C Syntax
#include <copro.h>
unsigned TAG_LINK (name_id,tag_name)
unsigned *name_id;
unsigned char *tag_name,;
Parameters

name_id

Name_id is used to return a handle assigned by the TAG library to the
TAG name.

tag_name

Specifies the name of the user’'s TAG. This is a null-terminated
ASCII string of up to 9 characters. The TAG name can contain the
following characters: A-Z, a-z, 0-9, and _. The first character
must be alphabetic.

Returns

Value Symbolic Name Meaning
0 CC_SUCCESS Operation successful
176 CC_E_NOTAG TAG not found

Description
Use the TAG_LINK function to get a TAG handle for a TAG-table entry.

This handle is an offset into the TAG table. It makes subsequent access to
the table faster than doing a symbolic name search.

B-121

Appendix B

API Library of Routines
TAG_LINK

C Example

unsigned status;
unsigned fred_id;

status = TAG_LINK (&fred_id,“Fred”);

BASIC Example

The BASIC function code is 64.

DIM status :INTEGER
DIM tag_id . INTEGER

rem * TAG_LINK - link to the tag “wall” defined by another process
RUN AB_BAS (64,status,ADDR(tag_id),“wall”)

References

TAG_DEFINE(); TAG_UNDEF(); TAG_DEF_AVAIL();
TAG_GLOBAL_UNDEF();

B-122

TAG_LOCK

Appendix B

API Library of Routines
TAG_LOCK

This function locks the requested TAG memory area.

C Syntax
#include <copro.h>

unsigned TAG_LOCK (tag,timeout)
unsigned tag;
or
char *tag;
unsigned timeout;

Parameters
tag

Use to access the TAG table. This can be either the symbolic TAG or
the handle returned from a TAG_LINK or TAG_DEFINE call.

timeout

Timeout value in seconds, from 0 to 16,383. A value of CC_FOREVER
(defined in COPRO.H) will wait until the TAG has been locked.

Returns

Value Symbolic Name Meaning

0 CC_SUCCESS Operation successful

120 CC_E_BADID TAG define ID out of range

160 CC_E INV_TO Invalid timeout value

171 CC_E_TIME_LOCKED Did not complete in time, TAG locked
176 CC_E_NOTAG TAG not found

Description

Use the TAG_LOCK function to protect against concurrent access to the
tagged data when accessing the TAG without using TAG_READ or
TAG_WRITE.

Important: After access to the TAG is completed, you must call
TAG_UNLOCK to unlock the TAG; otherwise, the system may hang.

A status of CC_SUCCESS indicates that the calling procedure has locked
the TAG.

B-123

Appendix B

API Library of Routines
TAG_LOCK

C Example
unsigned name_id;
register int x; /* loop counter */
unsigned status; /* status return */
int Fred_ptr [12] /* pointer to Fred data area */
int buffer [12]; [* transfer buffer */

status - TAG_DEFINE (&name_id, Fred_ptr, “Fred”, 12 * sizeof (int), TG_MODIFY);

status = TAG_LOCK (“Fred”,30); [* lock TAG Fred */

if (status = CC_SUCCESS) exit (status); [* exit if wrong TAG */
for (x=0; x<12; ++x) *Fred_ptr = buffer [x]; /* transfer data to Fred*/
status = TAG_UNLOCK (“Fred”) ; /* unlock Fred */

/* the above example from TAG_LOCK to TAG_UNLOCK would be functionally
equivalent to the following */
status = TAG_WRITE (“Fred”, 0, 12 * sizeof (int), &buffer,30);

BASIC Example

The BASIC function code is 69.
DIM status : INTEGER
DIM tag_id - INTEGER

rem * TAG_LOCK - lock the tag specified by tag_id from concurrent access
rem * the timeout is 30 seconds.
RUN AB_BAS (69,status,tag_id,30)

References

TAG_LINK(); TAG_DEFINE(); TAG_UNDEF();
TAG_READ(); TAG_WRITE(); TAG_UNLOCK();

B-124

TAG_READ

Appendix B

API Library of Routines
TAG_READ

Reads data from a user’s TAG memory area.

C Syntax
#include <copro.h>

unsigned TAG_READ (tag,offset,size,buffer,timeout)
unsigned tag;
or
char *tag
unsigned offset;
unsigned size;
unsigned *buffer;
unsigned timeout;

Parameters

tag

Use to access the TAG table. This can be either the symbolic TAG or
the handle returned from a TAG_LINK or TAG_DEFINE call.

offset

A byte offset from the start of the tagged area from which data will
be read.

size

Specifies the number of bytes to read from the tagged area.
buffer

Specifies the buffer to copy the data read from the tagged area.

timeout

Timeout value in seconds (valid range 0-16383). The function will
timeout unless the TAG can be read before the timeout expires. The
TAG may not be able to be read if another process has the TAG locked.
A value of CC_FOREVER (defined in COPRO.H) will cause this
function to wait indefinitely until the TAG can be read.

Returns

Value Symbolic Name Meaning

0 CC_SUCCESS Operation successful

120 CC_E _BADID TAG define ID out of range

131 CC_E_TOOBIG Data item is greater than maximum allowed
160 CC_E_INV_TO Invalid timeout value

171 CC_E_TIME_LOCKED Did not complete in time, TAG locked

176 CC_E_NOTAG TAG not found

B-125

Appendix B

API Library of Routines
TAG_READ

Description

Use the TAG_READ function to read data from a tagged memory area.
This function guarantees that the read data area is semaphored during the
read operation.

C Example

unsigned my_fred;
unsigned status;

status = TAG_READ (“Fred”,0,sizeof(my_fred),&my_fred,30);

BASIC Example

The BASIC function code is 66.

DIM status - INTEGER
DIM tag_id . INTEGER
DIM my_data . INTEGER

rem * TAG_READ - read 4 bytes from a tag, starting at offset 0 into
rem * my_data with a timeout of 30 seconds.
RUN AB_BAS (66,status,tag_id,0,4,ADDR(my_data),30)

References

TAG_LINK(); TAG_DEFINE(); TAG_UNDEF();
TAG_GLOBAL_UNDEF(); TAG_WRITE(); TAG_LOCK();
TAG_UNLOCK(); TAG_READ_W(); TAG_WRITE_W();

B-126

TAG_READ W

Appendix B

API Library of Routines
TAG_READ W

Reads data from a user’s TAG memory area after the TAG is written
by TAG_WRITE_W.

C Syntax

#include <copro.h>

unsigned TAG_READ_W (tag,offset,size,buffer,timeout)
unsigned tag;
or
unsigned char *tag;
unsigned offset;
unsigned size;
unsigned *buffer;
unsigned timeout;

Parameters
tag

Use to access the TAG table. This can be either the symbolic TAG or
the handle returned from a TAG_LINK or TAG_DEFINE call.

offset

A byte offset from the start of the tagged area from which data will
be read.

Slze

Specifies the number of bytes to read from the tagged area.
buffer

Specifies the buffer to copy the data read from the tagged area.
timeout

Timeout value in seconds (valid range 0-16383). The function will
timeout unless the TAG can be read before the timeout expires. The
TAG may not be able to be read if another process has the TAG locked
or if the corresponding TAG_WRITE_W from another process has not
been issued. A value of CC_FOREVER (defined in COPRO.H) will
cause this function to wait indefinitely until the TAG can be read.

Returns

Value Symbolic Name Meaning

0 CC_SUCCESS Operation successful

120 CC_E_BADID TAG define ID out of range

131 CC_E_TOOBIG Data item is greater than maximum allowed
160 CC_E_INV_TO Invalid timeout value

171 CC_E_TIME_LOCKED Did not complete in time, TAG locked

173 CC_E_TIME_NOWRITE | Did not complete in time, TAG not written

176 CC_E_NOTAG TAG not found

B-127

Appendix B

API Library of Routines
TAG_READ W

Description

Use the TAG_READ_W function to read data from a tagged memory area.
This function waits until a corresponding TAG_WRITE_W function is
posted. More than one TAG_READ_W can be pending on a single
TAG_WRITE_W. This function guarantees that the read data area is
semaphored during the read operation.

C Example

unsigned my_fred;
unsigned status;

status = TAG_READ_W (“Fred”,0,sizeof(my_fred),&my_fred,30);

BASIC Example

The BASIC function code is 65.

DIM status INTEGER
DIM tag_id :INTEGER
DIM my_data :INTEGER

rem * TAG_READ_W - read 4 bytes from a tag, starting at offset 0 into

rem * my_data with a timeout of 30 seconds. The read will
rem * not proceed until the specified tag has been written
rem * to by TAG_WRITE_W.

RUN AB_BAS (65,status,tag_id,0,4,ADDR(my_data),30)

References

TAG_LINK(); TAG_DEFINE(); TAG_UNDEF();
TAG_GLOBAL_UNDEF(); TAG_WRITE(); TAG_LOCK():;
TAG_UNLOCK(); TAG_READ(); TAG_WRITE_W();

B-128

TAG_UNDEF

Appendix B

API Library of Routines
TAG_UNDEF

Removes a TAG or TAGs from the TAG table defined by the
calling process.

C Syntax
#include <copro.h>

unsigned TAG_UNDEF (tag)
unsigned tag;
or
char *tag;

Parameters
tag

Use to access the TAG table. This can be either the symbolic TAG or
the handle returned from a TAG_LINK or TAG_DEFINE call. A value
of CC_ALLTAGS (defined in COPRO.H) will remove all TAGs defined
by this process.

Returns

Value Symbolic Name Meaning

0 CC_SUCCESS Operation successful

120 CC_E_BADID TAG define ID out of range

176 CC_E_NOTAG TAG not found

179 CC_E_NOTDEFINER Caller is not the definer of this TAG

Description

Use the TAG_UNDEF function to remove a TAG or TAGs from the TAG
table. This function can only remove TAGs defined by the calling process.

C Example

unsigned status;
status = TAG_UNDEF (“Fred”);

B-129

Appendix B

API Library of Routines
TAG_UNDEF

BASIC Example

The BASIC function code is 61.
DIM status INTEGER

rem * TAG_UNDEF - undefine the tag “Fred” created by my process
RUN AB_BAS (61,status,"Fred”)

References

TAG_DEFINE(); TAG_DEF_AVAIL(); TAG_LINK();
TAG_GLOBAL_UNDEF();

B-130

TAG_UNLOCK

Appendix B

API Library of Routines
TAG_UNLOCK

This function unlocks the requested TAG memory area.

C Syntax
#include <copro.h>

unsigned TAG_UNLOCK (tag)
unsigned tag
or
char *tag;

Parameters
tag

Use to access the TAG table. This can be either the symbolic TAG or
the handle returned from a TAG_LINK or TAG_DEFINE call.

Returns

Value Symbolic Name Meaning

0 CC_SUCCESS Operation successful

120 CC_E_BADID TAG define ID out of range

176 CC_E_NOTAG TAG not found

178 CC_E_NOTLOCKER Caller is not the locker of this TAG
185 CC_E_NOTLOCKED TAG is not locked
Description

Use the TAG_UNLOCK function to unlock the TAG locked by
TAG_LOCK.

Important: This function must be called after access to the TAG is
completed; otherwise, the system may hang.

B-131

Appendix B

API Library of Routines
TAG_UNLOCK

C Example

See the TAG_LOCK() example on page B-123.

BASIC Example

The BASIC function number is 70.
DIM status : INTEGER

rem * TAG_UNLOCK - unlock the tag “Fred”, the timeout is 30 seconds
RUN AB_BAS (70,status,“Fred”,30)

References

TAG_LINK(): TAG_DEFINE(); TAG_UNDEF();
TAG_READ(); TAG_WRITE(); TAG_LOCK();

B-132

TAG_WRITE

Appendix B

API Library of Routines
TAG_WRITE

Writes data to a user’s TAG memory area.

C Syntax

#include <copro.h>

unsigned TAG_WRITE (tag,offset,size,buffer,timeout)
unsigned tag;
or
char *tag
unsigned offset;
unsigned size;
unsigned char *buffer;
unsigned timeout;

Parameters

tag

Use to access the TAG table. This can be either the symbolic TAG or
the handle returned from a TAG_LINK or TAG_DEFINE call.

offset

A byte offset from the start of the tagged area from where data will
be written.

Size

Specifies the number of bytes to write to the tagged area.
buffer

Specifies the buffer to copy the write data write to the tagged area.
timeout

Timeout value in seconds (valid range 0-16383). The function will
timeout unless the TAG can be written before the timeout expires. The
TAG may not be able to be written if another process has the TAG
locked. A value of CC_FOREVER (defined in COPRO.H) will cause
this function to wait indefinitely until the TAG can be written.

Returns

Value Symbolic Name Meaning

0 CC_SUCCESS Operation successful

120 CC_E _BADID TAG define ID out of range

131 CC_E_TOOBIG Data size greater than the maximum allowed
160 CC_E_INV_TO Invalid timeout value

171 CC_E_TIME_LOCKED Did not complete in time, TAG locked
174 CC_E_TAGPEND TAG write is already pending on this TAG
176 CC_E_NOTAG TAG not found

178 CC_E_NOTLOCKER Caller is not the locker of this TAG

189 CC_E_NOACCESS TAG is READ only

B-133

Appendix B

API Library of Routines
TAG_WRITE

Description

Use TAG_WRITE to write data to a tagged memory area. This
function guarantees that the write data area is semaphored during the

write operation.

C Example

unsigned my_fred;
unsigned status;
my_fred = 42;

status = TAG_WRITE (“Fred”,0,sizeof(my_fred),&my_fred,30);

BASIC Example

The BASIC function number is 68.

DIM status : INTEGER
DIM tag_id : INTEGER
DIM w_data - INTEGER

rem * TAG_WRITE - write 4 bytes to a tag, starting at offset 0 from
rem * w_data with a timeout of 30 seconds.
RUN AB_BAS (68,status,tag_id,0,4,ADDR(w_data),30)

References

TAG_LINK(); TAG_DEFINE(); TAG_UNDEF();
TAG_GLOBAL_UNDEF(); TAG_READ(); TAG_LOCK();
TAG_UNLOCK(); TAG_READ_W(); TAG_WRITE_W();

B-134

TAG_WRITE_W

Appendix B

API Library of Routines
TAG_WRITE_W

Writes data to a user’'s TAG memory area then waits for it to be read by
a TAG_READ_W.

C Syntax

#include <copro.h>

unsigned TAG_WRITE (tag,offset,size,buffer,timeout)
unsigned tag;
or
char *tag;
unsigned offset;
unsigned size;
unsigned char *buffer;
unsigned timeout;

Parameters
tag

Use to access the TAG table. This can be either the symbolic TAG or
the handle returned from a TAG_LINK or TAG_DEFINE call.

offset
A byte offset from the start of the tagged area from where data will
be written.
size
Specifies the number of bytes to write to the tagged area.
buffer
Specifies the buffer to copy the write data write to the tagged area.
timeout

Timeout value in seconds (valid range 0-16383). The function will
timeout unless the TAG can be written before the timeout expires.
The TAG may not be able to be written if another process has the
TAG locked or if the corresponding TAG_READ_W from another
process has not been issued. A value of CC_FOREVER (defined in
COPRO.H) will cause this function to wait indefinitely until the

TAG can be written.

Returns

Value Symbolic Name Meaning

0 CC_SUCCESS Operation successful

120 CC_E BADID TAG define ID out of range

131 CC_E_TOOBIG Data size greater than the maximum allowed
160 CC_E INV_TO Invalid timeout value

171 CC_E_TIME_LOCKED Did not complete in time, TAG locked

172 CC_E_TIME_NOREAD Did not complete in time, the TAG not read

174 CC_E_TAGPEND TAG write is already pending on this TAG
176 CC_E_NOTAG TAG not found
189 CC_E_NOACCESS TAG is READ only

B-135

Appendix B

API Library of Routines
TAG_WRITE_W

B-136

DIM status
DIM tag_id

DIM w_data

Description

Use TAG_WRITE_W to write data to a tagged memory area. This
function writes the data, then it waits until a corresponding

TAG_READ_W is posted. This function guarantees that the write data

area is semaphored during the write operation.

C Example

unsigned my_fred;
unsigned status;
my_fred = 42;

status = TAG_WRITE_W (“Fred”,0,sizeof(my_fred),&my_fred,30);

BASIC Example

The BASIC function code is 67.

T INTEGER
T INTEGER
T INTEGER

rem * TAG_WRITE_W - write 4 bytes to a tag, starting at offset 0 from

rem*
rem*
rem*

w_data with a timeout of 30 seconds. This function
will return only after the tag has been read by
TAG_READ_W or a timeout.

RUN AB_BAS (67,status,tag_id,0,4,ADDR(w_data),30)

References

TAG_LINK(); TAG_DEFINE(); TAG_UNDEF();
TAG_GLOBAL_UNDEF(); TAG_READ(); TAG_LOCK();
TAG_UNLOCK(); TAG_READ_W(); TAG_WRITE();

Error Values

Appendix B

API Library of Routines
Error Values

The following Table B.A lists all error codes (DTL, CC, and PCCC) for

the control coprocessor.

Table B.A
Error Codes
Decimal Hex Symbolic Name Description
Value Value
0 0 DTL_SUCCESS or Operation successful
CC_SUCCESS
3 3 DTL_E_DEFBAD2 Invalid number of elements to DEFINE
4 4 DTL_E_DEFBAD3 Invalid data type
5 5 DTL_E_DEFBAD4 Invalid access rights
9 9 DTL_E_DEFBADN Invalid number of DEFINE parameters
1 B DTL_E_FULL DEFINE table is full
15 F DTL_E_R _ONLY Data item defined as READ only
16 10 DTL_E_INVTYPE Data is invalid type for operation
17 1 DTL_E_NO_MEM Not enough memory available
18 12 DTL_E_TIME I/0 operation did not complete in time
19 13 |DTL_E_NOINIT DEFINE table not initialized
20 14 DTL_E_BADID Definition ID out of range
24 18 |DTL_E_FAIL /0 completed with errors
25 19 DTL_E_BADPARAM Bad parameter value
26 1A DTL_E_NOPARAM Expected parameter is missing
27 1B |DTL_E_NOATMPT /O operation was not attempted
31 1F DTL_E_TOOBIG Data item greater than maximum allowed
32 20 DTL_E_NODEF No such data item defined
38 26 |DTL_E_DFBADADR Bad DEFINE address
39 27 DTL_E_NOREINIT DTL system already initialized
40 28 DTL_E_INPTOOLONG DEFINE input string too long
4 29 DTL_E_CNVT Data-conversion error
42 2A |DTL_E_GETIME PLC-5 time invalid
50 32 DTL_E_BADDEF Invalid use of definition

B-137

Appendix B

API Library of Routines
CC Errors

B-138

Decimal Hex Symbolic Name Description
Value Value

101 65 CC_PENDING /0 operation in progress
17 75 CC_E_NO_MEM Not enough memory available
118 76 CC_E_TIME I/0 operation did not complete in time
120 78 CC_E_BADID TAG define ID out of range
124 7C |CC_E_FAIL /0 completed with errors
127 7F | CC_E_NOATMPT I/0 operation not attempted
131 83 |CC_E_TOOBIG Data item is greater than maximum allowed
133 85 CC_E_BAD_MSGID Message ID out of range (0-31)
141 8D |CC_E CNVT Data conversion error
157 9D |CC_E _NOTCONNECT PLC is not connected or offline
159 9F | CC_E_NOEXPANDER Expander not present
160 A0 |CC_E INV_TO Invalid timeout value
161 Al CC_E_INV_PORT Invalid port address
162 A2 |CC_E_INV_CTYPE Invalid coprocessor data type
163 A3 |CC_E_INV_PTYPE Invalid PLC-5 data type
164 A4 | CC_E_INV_BPI_MASK Invalid value for BPI trigger mask
165 A5 |CC_E_BAD RACK Rack value out of range
166 A6 CC_E_BAD_GROUP Group value out of range
167 A7 | CC_E_BAD_MODULE Module slot value out of range
168 A8 |CC_E BAD RETRY Retry value out of range
171 AB |CC_E_TIME_LOCKED Did not complete in time, TAG locked
172 AC |CC_E_TIME_NOREAD Did not complete in time, TAG not read
173 AD |CC_E_TIME_NOWRITE | Did not complete in time, TAG not written
174 AE CC_E_TAGPEND TAG WRITE is already pending on this TAG
175 AF |CC_E_BADTAG Invalid TAG name
176 B0 |CC_E_NOTAG TAG not found
177 B1 CC_E_TAGFULL TAG table is full
178 B2 CC_E_NOTLOCKER Caller is not the locker of this TAG
179 B3 CC_E_NOTDEFINER Caller is not the definer of this TAG
181 B5 CC_E_MSGPEND Message already pending
182 B6 CC_E_MSG_ABORT Message aborted by CC_MKILL
184 B8 |CC_E_DUP Duplicate TAG
185 B9 CC_E_NOTLOCKED Tagis not locked
186 BA | CC_E_BADACC Bad value for TAG access
189 BD |CC_E NOACCESS TAG is READ only
190 BE |CC_E_SIZE Invalid size for operation
191 BF |CC_E TOOSMALL Size of buffer too small
192 Co0 |CC_E_INVTYPE Invalid type for operation

Appendix B

API Library of Routines
PCCC Errors

Decimal Hex Symbolic Name Description
Value Value
258 102 |PCCC_E_102 Remote station did not acknowledge command
259 103 |PCCC_E_103 Duplicate token holder detected on link
260 104 |PCCC_E_104 Channel is disconnected from link
261 105 |PCCC_E_105 Timed out waiting for a response from remote station
262 106 |PCCC_E_106 Duplicate node address detected on link
263 107 |PCCC_E_107 Communication channel is off-line or inactive
264 108 |PCCC_E_108 Hardware fault on communication channel
272 110 |PCCC_E_110 lllegal command or format, including odd address
288 120 |PCCC_E_120 Host has problem and will not communicate
304 130 PCCC_E 130 Remote station host is not there, is disconnected, or shut down
320 140 |PCCC_E_140 Host could not complete function due to hardware fault
336 150 |PCCC_E_150 Addressing problem or memory protect rungs
352 160 |PCCC_E_160 Function disallowed due to command protection selection
368 170 |PCCC_E_170 Processor is in program mode
384 180 |PCCC_E_180 Compatibility mode file missing or communication zone
400 190 |PCCC_E_190 Remote station cannot buffer command
432 1B0 |PCCC_E_1B0 Remote station problem, due to download
448 1C0 |PCCC_E_1C0 Cannot execute command due to IBPs
513 201 PCCC_E_201 lllegal address format; a field has an illegal value
514 202 |PCCC_E 202 lllegal address format; not enough fields specified
515 203 |PCCC_E 203 lllegal address format; too many fields specified
516 204 |PCCC_E 204 lllegal address; symbol not found
517 205 |PCCC_E 205 lllegal address; symbol is 0 or greater than 8 characters
518 206 |PCCC_E_206 lllegal address; address does not exist
519 207 |PCCC_E 207 lllegal size
520 208 |PCCC_E 208 Cannot complete request; situation changed
521 209 |PCCC_E 209 Data is too large
522 20A |PCCC_E 20A Size too big
523 20B |PCCC_E 20B No access, privilege violation
524 20C |PCCC_E_20C Resource is not available
525 20D |PCCC_E_20D Resource is already available
526 20E |PCCC_E_20E Command cannot be executed
527 20F |PCCC_E_20F Overflow; histogram overflow
528 210 |PCCC_E 210 No access
529 211 |PCCC_E_211 Incorrect type data
530 212 |PCCC_E 212 Bad parameter

B-139

Appendix B

API Library of Routines
PCCC Errors

Decimal Hex Symbolic Name Description
Value Value

531 213 |PCCC_E 213 Address reference exists to deleted area

532 214 |PCCC_E 214 Command execution failure for unknown reason

533 215 |PCCC_E 215 Data conversion error

534 216 |PCCC_E 216 1771 rack adapter not responding

535 217 |PCCC_E 217 Timed out, 1771 backplane module not responding

536 218 PCCC_E 218 1771 module response was not valid: size, checksum, etc.

537 219 |PCCC_E 219 Duplicated label

538 21A |PCCC_E_21A File is open; another station owns it

539 21B |PCCC_E_21B Another station is the program owner

B-140

BASIC Function Codes

Appendix B

API Library of Routines
BASIC Function Codes

The following Table B.B lists the BASIC function codes.

Table B.B

BASIC Function Codes
Function Name Function Description

Number

CC_INIT 0 Initialize Control Coprocessor library
DTL_INIT 1 Initialize DTL library
DTL_C_DEFINE 2 Define a DTL data definition
DTL_UNDEF 3 Un-define a DTL data definition
DTL_DEF_AVAIL 4 Determine DTL definitions available
DTL_READ W 5 Read data from the PLC
DTL WRITE_W 6 Write data to the PLC
DTL RMW W 7 Perform read/modify/write on data
DTL_GET_WORD 8 Get a word from a byte array
DTL_GET_FLT 9 Get a floating point from a byte array
DTL_GET _3BCD 10 Convert a 3 digit BCD value to binary
DTL_GET _4BCD 1 Convert a 4 digit BCD value to binary
DTL PUT_WORD 12 Put a word to a byte array
DTL PUT FLT 13 Put a floating point to a byte array
DTL_PUT_3BCD 14 Convert binary to 3 digit BCD
DTL_PUT_4BCD 15 Convert binary 4 digit BCD
DTL_SIZE 16 Get size of memory to store data item
DTL_TYPE 17 Get data type of Coprocessor data item
DTL _CLOCK 18 Set coprocessor clock to PLC clock
DTL READ W_IDX 20 Read any element from PLC data file
DTL_WRITE_W_IDX 21 Write any element to PLC data file
DTL RMW_W_IDX 22 Read/modify/write any element from PLC file
BPI_DISCRETE 32 Get/Set discrete 1/0 word
BPI_WRITE 33 Allow Block Transfer Read
BPI_READ 34 Allow Block Transfer Write
MSG_READ_W_HANDLER 40 Initiate and process message read
MSG_READ_HANDLER 41 Initiate message read processing
MSG_WRITE_W_HANDLER 42 Initiate and process message write
MSG_WRITE_HANDLER 43 Initiate message write processing
MSG_CLR_MASK 44 Clear bit in the read/write masks
MSG_SET MASK 45 Set bit in the read/write masks
MSG_TST_MASK 46 Test bit in the read/write masks
MSG_ZERO_MASK 47 Zero all bits in the read/write masks
MSG_WAIT 48 Wait for I/O completion of message

B-141

Appendix B

API Library of Routines
BASIC Function Codes

B-142

Function Name Function Description
Number

TAG_DEFINE 60 Define symbolic TAG to memory

TAG_UNDEF 61 Undefine symbolic TAG of memory calling
process

TAG_GLOBAL_UNDEF 62 Undefine symbolic TAG of memory any
process

TAG_DEF_AVAIL 63 Determine TAG definitions available

TAG_LINK 64 Get TAG handle to symbolic TAG

TAG_READ_W 65 Read data from a symbolic TAG after a
TAG_WRITE_W

TAG_READ 66 Read data from a symbolic TAG

TAG_WRITE_W 67 Write data to a symbolic TAG and wait for a
TAG_READ_W

TAG_WRITE 68 Write data to a symbolic TAG

TAG_LOCK 69 Lock the TAG from concurrent access

TAG_UNLOCK 70 Unlock the locked TAG

CC_ERROR 100 Get pointer to “canned” error message

CC_ERRSTR 101 Transfer error message to user buffer

CC_DISPLAY_STR 102 Display 4 ASCII characters

CC_GET_DISPLAY_STR 103 Get the currently displayed characters

CC_DISPLAY_HEX 104 Display binary value in hexadecimal

CC_DISPLAY_EHEX 105 Display binary value in hexadecimal

CC_DISPLAY_DEC 106 Display binary value in decimal

CC_PLC_SYNC 107 Synchronize module to PLC scan

CC_PLC_STATUS 108 Get current PLC status information

CC_STATUS M Get current coprocessor status information

CC_EXPANDED_STATUS 12 Get current expanded coprocessor status
information

CC_PLC_BTW 113 Request PLC-5 to perform block-transfer
read with an 1/0 module

CC_PLC_BTR 114 Request PLC-5 to perform block-transfer
write with an |/O module

Appendix

Cable Connections

Appendix Objectives This appendix provides pin assignments for ports on the main module
and the serial expander module. This appendix also provides cable
configurations for connecting some personal computers to the 9-pin
and 25-pin ports.

Connecting to the 9-Pin Table C.A provides the pin assignments for the 9-pin COMMO (/term)

COMMO (/TERM) Port port on the control-coprocessor main module. Figure C.1 and Figure C.2
show cable configurations for connecting either a 9-pin or 25-pin
communication port of a personal computer to the control-coprocessor
main module 9-pin port.

Table C.A

Pin Assignment for 9-Pin COMMO (/term) Port

Pin Signal Pin Signal Pin Signal

1 DCD 4 DTR 7 RTS

2 RxD 5 Signal GND 8 CTS

3 TxD 6 DSR 9 No Connect

Cable Length Requirements
Communication for the COMMO port complies with EIA RS-232C

requirements. For all available transmission rates, you can use a cable
with a maximum length up to 15 m (50 ft).

Cable Configurations

See Figure C.1 and Figure C.2 for cable configurations for the
COMMO port.

C-1

Appendix C

Cable Connections

Figure C.1
Cable for a 9-Pin IBM PC/AT, T50, T60, or T47 Computer
to the Control Coprocessor 9-Pin COMMO Port

6 6
9 9
“ (50 ft.)
9-socket 9-socket

female connector to female connector to
personal computer control coprocessor

Common 5 (: [5 Common
™ 3 - 2 | RO
RXD | 2 3 | TXD
RTS | 7 A A 8 | CTS
cTS | 8 7 | RTS
DSR | 6 —e—+ A 4 | DTR
o 1 - o
DTR | 4 o . 6 | DSR
NG | 9 I \ 9 | NC
Shell shield Shell shield 19491

Figure C.2

Cable for a 25-Pin IBM PC/XT, VT102, V1220, 1784-T45 Computer,
or Modem to the Control Coprocessor 9-Pin COMMO Port

6
9
{ b
< (50 ft.
25-socket 9-socket

female connector to female connector to
personal computer control coprocessor

Common [7 A [5 | Common

TXD | » 2 | RXD

W a .

RTS | 4 A R 8 | CTS

cTS | 5 7 | RTS

DSR | 6 ¢ - — 4 | DTR

cd | 8 J 1] CD

DTR | 20 — _ 6 | DSR

RI |22 I \ 9 | NC

Shield | 1 Shell shield 19492

Appendix C

Cable Connections

Connecting to the 25-Pin Table C.B provides the pin assignments for the 25-pin COMM1,
COMM1, 2, and 3 Ports COMMZ2, and COMMS (/t1, /t2, /t3) ports on the main and serial
expander modules.

Table C.B
Pin Assignments for 25-Pin COMM1, COMM2, and COMM3 Ports
Pin RS-232C RS-422A RS-423 RS-485
1 C.GND C.GND C.GND C.GND
2 TXD.OUT TXD.OUT TXD.OUT RESERVED
3 RXD.IN RXD.IN RXD.IN RESERVED
4 RTS.OUT RTS.OUT RTS.OUT RESERVED
5 CTS.IN CTS.N CTS.IN RESERVED
6 DSR.IN DSR.IN DSR.IN RESERVED
7 SIG.GND SIG.GND SIG.GND SIG.GND
8 DCD.IN DCD.IN DCD.IN RESERVED
9 RESERVED RESERVED RESERVED RESERVED
10 NOT USED DCD.IN’ NOT USED NOT USED
11 RESERVED RESERVED RESERVED TXRX
12 RESERVED RESERVED RESERVED RESERVED
13 NOT USED CTS.IN' NOT USED NOT USED

—_
E=N

NOT USED TXD.OUT' SEND COM NOT USED

15 RESERVED RESERVED RESERVED RESERVED
16 NOT USED RXD.IN' REC COM NOT USED
17 RESERVED RESERVED RESERVED RESERVED
18 RESERVED RESERVED RESERVED RESERVED
19 NOT USED RTS.OUT' NOT USED NOT USED
20 DTR.OUT DTR.OUT DTR.OUT RESERVED
21 RESERVED RESERVED RESERVED RESERVED
22 NOT USED DSR.IN' NOT USED NOT USED
23 NOT USED DTR.OUT' NOT USED NOT USED
24 RESERVED RESERVED RESERVED RESERVED
25 RESERVED RESERVED RESERVED TXRX

Appendix C

Cable Connections

Cable Length Requirements
Refer to Table C.C for information on the cable lengths that you can use

with the serial COMM1, COMMZ2, and COMMS3 ports.

Table C.C
COMM1, COMM2, and COMM3 Maximum Cable Length

RS Communication ~ Transmission Rate Maximum Cable Length

232C all 15m (50 ft)

422 (compatible) 19.2 kbps 61 m (200 fi)
423 9600 61 m (200 ft)
485 all 1.2 Km (4000 ft)

Cable Configurations
See Figure C.3 for an example cable configuration.
Figure C.3

Cable for a 9-Pin IBM PC/AT, T50, T60, or T47 Computer
to the Control Coprocessor 25-Pin COMMH1, 2, or 3 Port

25
14
(xxx ft.)1
9-socket 25-pin
female connector to male connector to
personal computer control coprocessor
Common 5 , { _ . 7 Common
TXD 3 ‘ ‘ : : 3 RXD
RXD | 2 L L 5 | TXD
RTS | 7 A L 5 | CTS
cTs | 8 - I 4 | RTS
DSR | 6 | o — 20 | DTR
cD | 1] o o 8 | CD
DTR | 4 S o .J: 6 | DSR
NC | 9 Shell shield
Shell shield

19493
1
See Table C.C for maximum cable lengths for the COMM1, COMM2, and COMMS3 ports.

Connecting to the
Ethernet Port

Appendix C

Cable Connections

Table C.D provides pin assignments for connecting the transceiver to the
Ethernet port.

Table C.D

Pin Assignments for the Ethernet Port (Attachment Unit Interface)

Pin Signal Pin Signal Pin Signal Pin Signal
1 Cl-S 5 DI-A 9 Cl-B 13 VP

2 Cl-A 6 VC 10 DO-B 14 VS

3 DO-A 7 CO-A 1 DO-S 15 CO-B
4 DI-S 8 CO-S 12 DI-B Shid |PG

Cable Length Requirements

Refer to Table C.E for information on the cables for the Ethernet port.

Table C.E
Ethernet Cables

Catalog Number: Includes:

1785-TC02/A 2.0 m (6.5 ft) cable

1785-TC15/A 15.0 m (49.2 ft) cable

1785-TAS/A (kit) Thin-wire transceiver and 2.0 m (6.5 ft) cable

1785-TAM/A (kit)y | Thin-wire transceiver and 15.0 m (49.2 ft) cable

1785-TBS/A (kit) Thick-wire transceiver and 2.0 m (6.5 ft) cable

1785-TBMJA (kit) | Thick-wire transceiver and 15.0 m (49.2 ft) cable

Appendix Objectives

About PCBridge Software

Configuration Options

Appendix '

Using the PCBridge Software

This appendix provides additional information about using the PCBridge
software. Getting started using the software is covered in Chapters 3
and 4.

The PCBridge software is a PC-based development system for OS-9/680x0
applications. Through this software, you can access the OS-9 operating
system. The PCBridge software provides a C language cross-compiler, r68
assembly and linking tools, a debugger, and a complete set of
program-development utilities. These utilities include

= terminal emulation

= text and binary file transfers between PC-DOS and OS-9
= file manipulation

= session logging utilities.

The following are some of the PCBridge options that you can configure.
You first go to the configuration options menu. See Figure D.1.

Figure D.1
Configuration Options Menu

PCBridge ver. Microware's PC-hosted 05-9/680xA Development Sustem ‘\\\\\

Welcome to PCBridge
[PCBridge Configuration Options 1
A) Assembler R68 Options
B) C Compiler Options
Capture Session to Disk
Editor Name
Help

Edit Key Definitions

Log Session to Printer
Toggle Status Line
Video/Color Attributes
Write Configuration File
Quit Configuration Options

+PCB2 1:31 -CA -PR -LO +LF -LE +X0 -CT CD COM1 19Z8BN81 PCBridge 4/////

D-1

Appendix D

Using the PCBridge Software

D-2

Edit Key Definitions

Usek) Edit Key Definitions to edit the function-key definition file,
PCB.FNC. Select this option to invoke the chosen editor for the function
key file.

Important: [F1] and[Alt-F2] through[Alt-F9] are already defined
for PCBridge operationsDo not modify them.

You can define a string to send to the OS-9 system when any one of the
following function keys is pressed:

[F2] through[F12]

[Shift-F1] through[Shift-F12]

[Alt-F1] through[Alt-F12] (exceptAlt-F2] through
[Alt-F9])

[Ctrl-F1] through[Ctrl-F12]
Strings may be up to 65 characters long.

Five special characters are defined for use with the input key facility:

Use this special For this purpose:

character:

Vertical bar () Represent a carriage return

Tilde (7) Causes a one-second delay

Accent grave Causes the PCBridge software to wait for the 0S-9 system to send the next
character () character before sending any more of the function key string

Circumflex (*) Marks the following character as a control character

At sign (@) Marks the following character(s) as a PCBridge command

If the character following the @ is a letter, the corresponding [Alf] letter
PCBridge command is executed; if the character following the @ is NOT a
letter, that character is considered a delimiter and all characters in the string
up to the next occurrence of the delimiter are placed in the PCBridge
software’s keyboard buffer

For example, the following key definition sendiCal-G] to the
keyboard buffer whenever you presqalnFl] key:

A1="G

In this example, whe[Ctrl-F1] is pressed, the OS-9 system waits to see
as$ prompt before executingdr command.

C1="$@/DIR"M/

Appendix D

Using the PCBridge Software

To use any of the special characters literally, enter a circumflex (*) and an
accent grave (‘) character prior to the special character:

N

Log Session to the Printer

L) Log Session to Printer prints the PCBridge session in the same
manner as th€apture Session to Disk option writes the PCBridge
session to a file. This option works as a toggle to turn the capture session
on and off. The PCBridge software writes to the DOS device PRN:. The
software tries to prevent lock ups if the printer is off-line or out of paper.
You can activate printer logging and capture file logging together.

Toggle the Status Line

T) Toggle Status Line toggles the status line display off or on.

The status line indicates the current values of communications and session-

logging variables.

The format of the status line is as follows:

Scriptname HH:MM -CA -PR -LO -LF -LE -XO -CT -CD COMn baud p d b message

Command Description

Scriptname Specifies the name of a currently executing script, if any, or the name of the terminal emulation in use
HH:MM Specifies the time of day

+CA A capture file is open

-CA No capture file is open

+PR A printer file is open

-PR No printer file is open

+LO A logging file is open

-LO No logging file is open

+LF Line feeds are added to incoming carriage returns

-LF No line feeds are added to incoming carriage returns

+LE Local echo is on

-LE Remote echo is on

+X0 X-ON/X-OFF flow control is used

-XO X-ON/X-OFF flow control is turned off

+CT CTS checking is on

-CT CTS checking is off

+CD Carrier line is high

-CD Carrier dropped

COMn Indicates the serial port currently in use

baudpdb The baud rate, parity, data bits, and stop bits, respectively
message Messages are displayed here to indicate unusual problems in communication

Appendix D

Using the PCBridge Software

Loading Memory Module

Log On Remotely to
0S-9 Terminal

D-4

Thel) Load Memory Module option loads an OS-9 memory module
produced by the cross-compiler or cross-assembler. If you select this
option, the prompt is displayed as shown in Figure D.2.

Figure D.2
Load Memory Module

/ PCBridge Microware’s PC hosted 0S-9/680x0 Development System \

Enter module name to load:

o /

At the prompt, enter the module name. This module is transferred to the
0S-9 system and loaded into memory. This does not transfer the actual
module file to the disk used by the OS-9 system; it loads the module
directly into OS-9 memory.

Use theD) OS-9 Terminal option to remotely log on to the OS-9
system. The PCBridge software emulates a DEC VT100 terminal. To
access the PCBridge main menu, pfESE .

Sending and Receiving Files—Transfer Tags

The PCBridge software supports a method of batching file transfers
to/from the target OS-9 system. This is based on a user file called the
transfer list . The transfer list contains text that tells the PCBridge
software how to do a wide variety of file-transfer operations between the
PC and OS-9. Each directory from which the PCBridge software is
invoked can have its own unique transfer list. The transfer-list file,
TRANSFER.LST, is in the working directory.

The PCBridge software gives you the option of transferring a single file
or using a transfer tag to transfer an associated set of files. If you enter a
transfer tag, the software transfers all of the files associated with that tag.
The PCBridge software supports wildcards for file transfers. If a wildcard
symbol is used anywhere in a file name, all of the corresponding files

are transferred.

Appendix D

Using the PCBridge Software

Important: A wildcard specified on a receive is processed by Kermit on
the OS-9 target. A wildcard specified on a send is processed by Kermit on
the PC.

A transfer list consists of:

= A tag keyword (TAG), which must start in column one.
= A user-defined tag name and an optional description of the tag.
» An associated set of filename and transfer types.

You mustspecify a file type after the file name. Valid options are:

File Type Description
- text file

-b binary file

-l send file to 0S-9 and load it into memory as an 0S-9 module

For example, a transfer list (TRANSFER.LST) might look like Figure D.3.

Figure D.3
Transfer List

f PCBridge Microware’s PC hosted 0S-9/680x0 Development System \
JOE USER’S TRANSFER LIST

user—defined name optional description
keyword I Ve
' TAG'dbg_hello o debug files for hello world program
files

,,,,,,,,,,,,,,,,,,,,,,,,,,

hello -I

TAG src_hello - send hello source only
hello.c -t

TAG test_data - receive test data from target
test*.* -t testbin*.* -b

TAG config - receive config info from target

cfg* -b config.sys -t

o /

To create or modify a transfer list, sel@cModify Transfer List
from the main PCBridge menu. This invokes the editor on the file
TRANSFER.LST in the working directory.

Appendix D

Using the PCBridge Software

Modify Transfer List

Modify Build List

D-6

Use theT) Modify Transfer List option to create, edit, or view

the current transfer list. See page D-4 for the “Sending and Receiving
Files—Transfer Tags” section. If you select this option, the PCBridge
software invokes your editor on the file TRANSFER.LST in the current
working directory. A transfer list entry consists of:

= atag keyword (TAG) which must start in column one
= a user-defined tag name and an optional description of the tag
= an associated set of filename and transfer types

Separate entries with one or more spaces. nYastspecify a file type
after the file name. Valid options are:

File Type Description
- text file

-b binary file
-l send file to 0S-9 and load it into memory as an 0S-9 module

For example, a transfer list (TRANSFER.LST) might look like Figure D.4.

Figure D.4
Modify Transfer List

PCBridge Microware’s PC hosted OS-9/680x0 Development System
. JOE USER’'S TRANSFER LIST
user—defined name

optional description
keywordﬁriii o e

‘LTAGJfljbg_hello debug files for hello world program
files " hello.c -t hello.stb -b hello.dbg -b
hello -I

TAG src_hello - send hello source only
hello.c -t

TAG test_data - receive test data from target
test*.* -t testbin*.* -b

TAG config - receive config info from target

cfg* -b config.sys -t

o /

Use theU) Modify Build List option to create, edit, or view the
current build list. Select this option to edit the file BUILD.LST in the
current working directory.

A build list consists of:

= atag keyword (TAG) which must start in column one
= a user-defined tag name and an optional description of the tag
= an associated set of commands to compile/assemble the files

Using the Debugger

Appendix D

Using the PCBridge Software

For example, a build list (BUILD.LST) might look like Figure D.5.

Figure D.5
Build List

PCBridge Microware’s PC hosted 0S-9/680x0 Development System \\
JOE USER’S BUILD LIST

user—defined name

keyword “

! TAd ibld_hello . build hello world program
commands ‘ cchello.c-ixg ' L optional description
pause
TAG make_r0 - assemble r0 device descriptor
cd \os9clio
make r0
pause
TAG make_rl - assemble rl device descriptor
cd \os9c\io

168 -C -E -O=\usr\joeuser\rl rl.a >errors

type errors

pause

TAG makerom - assemble OS-9 ROM with ROMBUG
cd \pcportpk\rom

make rombug

pause

TAG testl - build data generator program

xcc testl.c -gix
xcc testl.r test2.r test3.r -n=testl
pause

This example describes a PCBridge session in which the C program
HELLO.C and its symbol file HELLO.STB are transferred to an OS-9
system and the debugger is invoked.

To use the debugger on an OS-9 module, you must compile the module
with the-g option. This creates the symbol file necessary for debugging.
The symbol file is created in the same directory as the compiled program
module. By default, the C compiler command line specified in the
PCBCC.BAT file does not use thg option. Use the)

Configuration Options andB) C Compiler Options to add-g

to the command line. It should be the same as the following line:

Xcc -ix %1 -g

Next, use the steps provided in the previous example to compile the
file HELLO.C.

You must be in OS-9 Terminal mode to use the debug utility through the

PCBridge software. You must also be logged onto the OS-9 system with
the same user ID as your GRPUSER DOS environment variable.

D-7

Appendix D

Using the PCBridge Software

Once you have logged in and changed to the desired directory:
1. PresgF1] to getthe PCBridge main menu.
2. Select the debugge) Debug .

3. You are prompted for the name of the program module to debug.
Enterhello

4. You are prompted for a transfer tag associated with the debug session.
PresqgReturn] . SeeFigure D.6.

Figure D.6
Debug Session

/ PCBridge Microware’s PC hosted OS-9/680x0 Development System \

Enter module name to Debug: hello

o /

The PCBridge software uses Kermit to transfer the module as shown in
Figure D.7.

Figure D.7
Transfer the Module

/ PCBridge Microware’s PC hosted 0S-9/680x0 Development System \

Send file HELLO using Kermit

Packets sent 137
Bytes sent 11938
Retries 13
Bytes to send 17784

Current block window : 33 : 33
8th bit quoting : OFF
Block check type : 1 character checksum

Compression : ON using <~>
Sliding windows : OFF
Long blocks : OFF

Last status message : NAK for packet 7 received.

~F=abort file "B=abort batch ~K=abort Kermit "R=retry

D-8

Compiler Options

Appendix D

Using the PCBridge Software

After HELLO is transferred, the PCBridge software looks for the symbol
module created by the cross C compiler. If found, the symbol file
HELLO.STB is transferred and the debugger is invoked. The debug
prompt lets you know that the debugger has been started:

dgb:

For complete information about the debugger, see the OS-9 C Language
User Manual, publication 1771-6.5.104—for example, chapter 6 of this
manual explains how and where to load the online-help file for the source
debugger, SRCDBG.HLP, on the control coprocessor.

The PCBridge menu and communications facilities remain in memory
when you compile and assemble programs, which may result in memory
limitations. To overcome such memory limitations, quit the PCBridge
software and call the compiler or assembler directly from the PCDOS
command line. With the PCBridge software no longer in memory, there
is more memory available for the task. You can call the linker directly
on the command line to link several compiled modules into one OS-9
memory module.

The cross-compiler contains several options that alleviate DOS constraints.
It is linked with the Phar Lap 286-DOS Extender to allow the use of
extended memory.

Information on the C compiler is found in the OS-9 C User Manual,
publication 1771-6.5.104. Information on the assembler and linker
is found in the OS-9 Assembler/Linker User Manual, publication
1771-6.5.106.

D-9

Appendix D

Using the PCBridge Software

Option

XCC

The following options are in the cross-compiler executive (XCC):

Description

-fo<string>

Fork the specified string. This option allows you to call the assembler or linker directly.
For example:

xcc -qfo‘r68 -q file.a -o=RELS/file.r”

-lo=<opts>

Options to pass through to the linker. You can use this option to get around the 128-character DOS
command-line limit.

Options to pass through to the linker. You can use this option to get around the 128-character DOS
command-line limit.

For example, rather than typing the names of all files to link, create a file containing the file names
and use a command like the following:

XCC -q -|0:“-Z:fnames” fI|eC

-po=<opts>

Options to pass through to the pre-processor. You can use this option to get around the 128
character DOS command line limit.

For example, if you have several -v or -d options for the pre-processor, you can easily exceed 128
characters. Create a file containing the -v and -d lines and use a command like the following:

Xce -q -po="-z=fnames” file.c

Option

CPP

The following option is in the macro preprocessor (CPP):

Description

-z=<path>

Read file names and options from a file. For use with the -po option on XCC. For example:
xcc -q -po="-z=fnames’” file.c

Option

L68

The following option is in the OS-9 linker (L68):

Description

-z=<path>

Read file names and options from a file. For use with the -lo option on XCC. For example:
xcc -q -lo="-z=fnames” file.c

D-10

Appendix D

Using the PCBridge Software

Troubleshooting PCBridge Use the following table to identify PCBridge problems and apply

Problems the solution.

Problem Solution

The PCBridge software hangs during initialization; | There is not enough memory to execute the PCBridge software. Generally, the PCBridge

or the PCBridge software starts, but then the screen | software reports that it may not have enough memory to execute before it fails.

fills with multi-colored junk or menus do not

disappear when they should.

The PCBridge software appears to execute Make sure that the serial cable is plugged into a serial port on your programming terminal and

correctly, but nothing seems to be sent out on the into the 0S-9 system.

sefial port. Ensure that the serial port is properly installed. If the serial port is located on an add-in board,
you may need to set switches or jumpers to activate the serial port correctly and to prevent
conflicts with other serial port(s) that may be present in your system.

File transfers never begin. Abort the transfer on the PCBridge software’s end by pressing [Ctrl-F] . Wait a few
seconds. If that does not seem to stop the transfer, try pressing [Ctrl-K] . Check the
communications parameters.

File transfer aborts. Ensure that the file type is specified correctly. Itis common for a PC-DOS file to contain an
extended ASCII character (one whose numeric value is greater than 127). Such characters are
commonly used for drawing lines or boxes. While these characters are considered legal text,
they are not legal in 0S-9.

Ensure that you have enough disk space on the PC to receive a file and enough 0S-9 disk
space when sending.

Many characters dropped in screen display. You may find that some characters are correctly displayed, but many are simply dropped from
the display and do not appear at all. Possible reasons include:

* You are running a program which conflicts with the PCBridge software in some way. Try
running the PCBridge software by itself.

« You are running at too high a baud rate for your programming terminal to keep up with the
remote system. Try using a lower baud rate.

« The serial port or cable is damaged. Try replacing the cable, then try another serial port if
there is one.

PCBridge Utilities In addition to the main PCBridge program and the cross C compiler

system, the PCBridge software includes several utilities:
Name Description

binex Binary to S-record converter

cudo Convert text file EOL characters to UNIX, DOS, or 0S-9
exbin S-record to binary converter

fixmod Modifies module CRC and parity

ident Module identification utility

merge Merge multiple files to a single file

names List names to stdout

0s9cmp File comparison utility

0s9dump File dump utility

These utilities are not directly available from the PCBridge menu; you can
invoke them from the PC-DOS command line.

D-11

Appendix D

Using the PCBridge Software

binex/exbin

D-12

Convert Binary Files to S-Record File/S-Record to Binary

Syntax

binex [<opts>] [<inpath>] [<outpath>]
exbin [<opts>] [<inpath>] [<outpath>]

Function

binex converts binary files to S-record filesxbin converts S-record
files to binary.

An S-record file is a type of text file that contains records representing
binary data in hexadecimal form. This Motorola-standard format is often
directly accepted by commercial PROM programmers, emulators, logic
analyzers, and similar devices that use the RS-232 interface. It can be
useful for transmitting files over data links that can only handle character-
type data. You can also use it to convert OS-9 assembler or compiler
generated programs to load on non-OS-9 systems.

binex converts the OS-9 binary file specified igpath> to a new file
with S-record format. The new file is specifieddmptpath> . S-records
have a header record to store the program name for informational
purposes. Each data record has an absolute memory address. This
absolute memory address is meaningless to OS-9 because OS-9 uses
position-independent code.

binex currently generates the following S-record types:

S1 records Use a two-byte address field.
S2 records Use a three-byte address field.
S3 records Use a four-byte address field.
S7 records Terminate blocks of S3 records.
S8 records Terminate blocks of S2 records.
S9 records Terminate blocks of S1 records.

To specify the type of S-record file to generate, usesttrnum> option.
<num>may be 1, 2, or 3, corresponding to S1, S2, or S3.

exbin is the inverse operatiorinpath> is assumed to be an S-record
format text file thakxbin converts to pure binary form in a new file
(<outpath>). The load addresses of each data record must describe
contiguous data in ascending ordexbin does not generate or check for
the proper OS-9 module headers or CRC check value required to actually
load the binary file. You can use tident utility to check the validity of

the modules if they are to be loaded or rerbin converts any of the
S-record types mentioned above.

Appendix D

Using the PCBridge Software

Using either command, if both paths are omitted, standard input and output
are assumed. If the second path is omitted, standard output is assumed.

Options

-? Display the options, function, and command
syntax of binex/exbin.

-a=<num> Specify the load address in hex. This is for
binex only.

-s=<num> Specify which type of S-record format to
generate. This is for binex only. <num> may
be 1, 2, or 3.

Examples

The following command line generat@®g.S1 in S1 format from the
binary file PROG

C>binex -s1 prog prog.S1

The following command line generateROG.1in OS-9 binary format
from the S1 type fil®PROG.S1

C>exbin prog.S1 prog.1

D-13

Appendix D

Using the PCBridge Software

cudo Convert Text File EOL Characters to UNIX, DOS, or OS-9

Syntax

cudo [<opts>] {<file name>}

Function

cudo converts text files from any format to the specified format. You may
specify more than onefile name>

The end-of-line (EOL) characters are listed below:

Type EOL Character Hex
UNIX <LF> 0x0a
DOS <CR><LF> 0x0d0a
0S-9 <CR> 0x0d

The resulting file overwrites the original file and retains the same
file name.

Functions

Options Description

-? Display the options, function, and command syntax
-d Convert files to DOS format (default on DOS)

-0 Convert files to 0S-9 format (default on 0S-9)

-u Convert files to UNIX format

-C Add a <ctrl Z> to the end of a file

-q Quiet mode

-Z Get list of input file names from stdin

-z=<file> Get list of input file names from <path>

Examples

C:\> cudo -0 exec.c init.c irg.c
processing:exec.c
processing:init.c
processing:irg.c

C:\> cudo -qu exec.c init.c irg.c

D-14

fixmod

Appendix D

Using the PCBridge Software

Fix Module CRC and Parity

Syntax

fixmod [<opts>] {<modname> [<opts>]}

Function

fixmod verifies and updates module parity and module CRC (Cyclic
Redundancy Check). You can also use it to set the access permissions and
the group.user number of the owner of the module.

Usefixmod to update the CRC and parity of a module every time a
module is patched or maodified in any way. OS-9 does not recognize a
module with an incorrect CRC.

You must have write access to the file before you cafixmsed .

Options

Option Description

-? Display the options, function, and command syntax of fixmod
-ua[=]<att.rev> Change the module’s attribute/revision level

-ub Fix the sys/rev field in BASIC packed subroutine modules
-uo[=]<grp.usr> Set the module owners group.user number to <grp.usr>

-up=<hex perm> Set the module access permissions to <hex perm>. You must
specify <hex perm> in hexadecimal

-u Update an invalid module CRC or parity. The -u option
recalculates and updates the CRC and parity. Without the u
option, fixmod only verifies the CRC and parity of the module

-Z Read the module names from standard input

-z=<file> Read the module names from <file>

Use the-up=<hex perm> option to set the module access permissions.
You must specifickhex perm> in hexadecimal. You must be the owner of
the module or a super user to set the access permissions. The permission
field of the module header is divided into four sections from right to left:

owner permissions
group permissions
public permissions
reserved for future use

D-15

Appendix D

Using the PCBridge Software

Each of these sections is divided into four fields from right to left:

read attribute

write attribute

execute attribute
reserved for future use

The entire module access permissions field is given as a four digit

hexadecimal value. For example, the commfamaebd -up=555

specifies the following module access permissions field:
-----e-r-e-r-e-r

The-uo<grp.usr> option allows you to set the module owner’s

group.user number to change the ownership of a module.

Examples

The following example checks the parity and CRC for module hello.

C>fixmod hello

Module: hello

Calculated parity matches header parity
Calculated CRC matches module CRC

This example updates CRC and parity, if necessary, and changes the
module owner ID to 1.85.

C>fixmod -u01.85 hello
Module: hello - Fixing header parity - Fixing module CRC

See Also

ident

D-16

ident

Appendix D

Using the PCBridge Software

Print OS-9 Module Identification

Syntax

ident [<opts>] {<modname>}

Function

ident displays module header information and additional information that
follows the header from OS-9 memory modules.

Typeident , followed by the module name(s) to examifznt
displays the following information (in this order):

module size

owner

CRC bytes (with verification)

header parity (with verification)
edition

type/language, and attributes/revision
access permission

For program modules it also includes:

execution offset

data size

stack size

initialized data offset

offset to the data reference lists

ident also prints the interpretation of the type/language and
attribute/revision bytes at the bottom of the display.

With the exception of the access permission data, all of the above fields are
self-explanatory. The access permissions are divided into four sections
from right to left:

owner permissions
group permissions
public permissions
reserved for future use

D-17

Appendix D

Using the PCBridge Software

D-18

Each of these sections is divided into four fields from right to left:

read attribute

write attribute

execute attribute
reserved for future use

If the attribute is turned on, the first letter of the attribute (r, w, €)
is displayed.

All reserved fields are displayed as dashes unless the fields are turned on.
In that case, the fields are represented with question marks. In either case,
the kernel ignores these fields as they are reserved for future use.

Owner permissions allow the owner to access the module. Group
permissions allow anyone with the same group number as the owner to
access the module. Public permissions allow access to the module
regardless of the group.user number. The following example allows the
owner and the group to read and execute the module, but it bars public
access:

Permission: $55 -------—--e-r-e-r

Options

Option Description

-? Display the options, function, and command syntax of ident

-z Read the module names from standard input

-z=<file> Read the module names from <file>

Examples

C>ident hello

Header for: hello

Module size: $542 #1346
Owner: 1.85

Module CRC: $BE79D0 Good CRC
Header parity: $345A Good parity
Edition: $7 #7

Ty/lLa At/Rev $101 $8001
Permission: $555 -----e-r-e-r-e-r
Exec off: $4E #78

Data size: $3AA #938

Stack size: $C00 #3072

Init. data off: $514 #1300

Data ref. off: $528 #1320

Prog Mod, 68000 obj, Sharable

merge

Appendix D

Using the PCBridge Software

Merge File to MERGE.OUT File

Syntax

merge [<opts>] {<path>}

Function

merge copies multiple input files specified kpath> to a file named
MERGE.OUT. merge is commonly used to combine several files into a
single output file.

Data is copied in the same order as the pathlists specified on the command
line. merge does no output line editing such as automatic line feed.

Options

Option Description

-? Display the options, function, and command syntax of merge
-Z Read the module names from standard input

-z=<file> Read the module names from <file>

Examples

$ merge compile.lis asm.lis
$ merge filel file2 file3 file4
$ merge -z=filel

D-19

Appendix D

Using the PCBridge Software

names List Names to stdout or file

Syntax
names <names> /* list names to stdout */
or

names <names> [><fname>] /* redirect to a file */

Function

If <fname> is omitted,names lists the names specified on the command
line tostdout . Otherwisenames redirects the output to the file specified
by <fname>. You can use this command to create a file for use by the
compiler/assembler/linker.

Options

None

Examples

The following example creates a file called CPPFILE and uses it during
the pre-processor phase of the compiler.

C:\> names -v=\OSK\DEFS -v=\C600\DEFS -v=\USR\DEFS >cppfile
C:\> xcc -q -po="-z=cppfile” -r=RELS file.c
CPPFILE contains the following lines:

-v=\OSK\DEFS
-v=\C600\DEFS
-v=\USR\DEFS

D-20

os9cmp

Appendix D

Using the PCBridge Software

Compare Binary Files

Syntax

0s9cmp [<opts>] <pathl> <path2>

Function

0s9cmp opens two files and performs a comparison of the binary values of

the corresponding data bytes of the files. If any differences are

encountered, the file offset (address), the hexadecimal value, and the
ASCII character for each byte are displayed.

The comparison ends when an end-of-file is encountered on either file. A
summary of the number of bytes compared and the number of differences

found is displayed.
Options
Option Description
-? Display the options, function, and command syntax of os9cmp
-b=<num>[k] Assign <num>k of memory for os9cmp use. 0s9cmp uses a 4K memory size
by default
-S Silent mode; stop the comparison when the first mismatch occurs and print an
error message
Examples

The following command uses an 8K buffer to comgar&1 with FILE2.

The following command line compares.E1 with itself.

C>0s9cmp filel file2 -b=8k

Differences
(hex) (ascii)
byte #1 #2 #1 #2

00000019 72 6e r n
0000001a 73 61 s a
0000001b 74 6¢ t |

Bytes compared: 0000002f
Bytes different: 00000003
filel is longer

C>0s9cmp filel filel

Bytes compared: 0000002f
Bytes different: 00000000

D-21

Appendix D

Using the PCBridge Software

0s9dump

D-22

Formatted File Data Dump in Hexadecimal and ASCII

Syntax

0s9dump [<opts>] [<path>] [<addr>]

Function

os9dump produces a formatted display of the physical data contents
of <path> , which may be a mass storage file or any other I/O device.
Theos9dump utility is commonly used to examine the contents of
non-text files.

To use this utility, typ@s9dump, the pathlist, and the address within the
file if desired, of the file to display. If you omipath> , standard input is
used. The output is written to standard output. When you specify
<addr> , the contents of the file display, starting with the appropriate
address.os9dump assumes thataddr> is a hexadecimal number.

The data is displayed 16 bytes per line in both hexadecimal and ASCII
character format. Data bytes that have non-displayable values are
represented by periods in the character area.

The addresses displayed on tisedump are relative to the beginning of

the file. Because memory modules are position-independent and stored in
files exactly as they exist in memory, the addresses shown on the dump are
relative to the load addresses of the memory modules.

Options

Option Description

-? Display the options, function, and command syntax of 0s9dump
-C Do not compress duplicate lines

Appendix D

Using the PCBridge Software

Examples
The following is sample output from the command:

C>0s9dump hello.c

(starting (data bytes in hexadecimal format) (data bytes in
address) ASCII format)

Addr 01 234567 89 ABCD EF02468ACE

0000 2369 6e63 6¢75 6465 203c 7374 6469 6f2e #include <stdio.
0010 683e 0dOa 6d61 696e 2829 0d0a 7b0d 0a09 h>..main()..{...
0020 7072 696e 7466 2822 6869 2c20 4d6f 6d2e printf(*hi, Mom.
0030 2229 3b0d O0a7d 0d0a M;..}.

D-23

Numbers

25-pin COMM1, 2, 3 (/t1, /t2, t3)
ports, cable connections, C-3

9-pin COMMO (/TERM) port, cable
connections, C-1

A

Access Unit Interface cabl8eeAUl
cable

accessing

0S-9, command line interface, 3-7

PCBridge, from DOS command
line, 3-5

RAM disk, program example, 4-6
serial port, ASCII, 7-5
addresses, Ethernet port
hardware Ethernet, 6-3, 6-11
Internet Protocol, 6-3
API functions

See als®pplication Program
Interface

defined, 5-2

BPI, 5-2, B-1

CC, 5-2,B-1

DTL, 5-2, B-1

MSG, 5-2, B-1

TAG, 5-2, B-1
library of functions, B-1
when to use, 5-2

Application Program Interface

See als®PI functions
defined, 5-1

BPI, 5-1

CC, 5-2

DTL, 5-1

MSG, 5-1

TAG, 5-2
when to use, 5-2

applications, control coprocessor, 1-2
applying power, control coprocessor,

2-11

ASCII

display, interpreting faults, serial
expander module, 8-1

peripheral devices, 7-5
terminal, user interface, 1-6
AUI cable, 6-2

See alsdccess Unit Interface
cable

backplane interface
See als®PI functions
functions
block transfer, 1-5, 5-6
discrete 1/O, 1-5
how to use, 5-6
update discrete data, 5-6
BASIC function codes, B-141
battery
backup, main module, 1-3
disposing, 2-4
installing, 2-3
replacing, 2-3
binary file, sending to control
coprocessor, 4-3
block transfer, 5-6
BPI_READ, 5-6
BPI_WRITE, 5-6
direct-connect mode, 1-5
standalone mode, 1-5
BPI functions
See alsdackplane interface
block transfer, 1-5, 5-6
discrete 1/0, 1-5
how to use, 5-6
update discrete data, 5-6
BPI_DISCRETE, 5-6, B-3
BPI_READ, 5-6, B-5
BPI_WRITE, 5-6, B-8

C

C return values, B-137

C test program
compiling, 4-2
creating, 4-1

cables, C-1
configurations

25-pin COMML, 2, 3 (/t1, /t2, /t3)

ports, C-4
9-pin COMMO (/TERM) port,
C-1
connections

25-pin COMML, 2, 3 (/t1, /t2, /t3)

ports, C-3
9-pin COMMO (/TERM) port,
C-1
Ethernet port, C-5
Ethernet, 6-2
length

25-pin COMML, 2, 3 (/t1, /t2, /t3)

ports, C-4

9-pin COMMO (/TERM) port,
C-1
Ethernet port, C-5

catalog numbers, control coprocessor,

1-2
CC utility functions, 5-2
CC_STATUS, 3-19
clear messages, 5-13

control coprocessor ASCII display,

5-12
control coprocessor error, 5-12
how to use, 5-12

initialize control coprocessor, 5-12

status, 5-13

synchronization, 5-13
CC_DISPLAY HEX, 5-12
CC_DISPLAY_DEC, 5-12, B-11
CC_DISPLAY_EHEX, 5-12, B-13
CC_DISPLAY_HEX, B-15
CC_DISPLAY_STR, 5-12, B-17
CC_ERROR, 5-12, B-19
CC_ERRSTR, 5-12, B-21

CC_EXPANDED_STATUS, 5-183,
B-23
CC_GET_DISPLAY_STR, 5-12,
B-25
CC_INIT, 5-12, B-27
CC_MKILL, 5-13
CC_PLC_BTR, B-28
CC_PLC_BTW, B-31
CC_PLC_STATUS, 5-13, B-34
CC_PLC_SYNC, 5-13, B-36
CC_STATUS, 3-19, 5-13, B-38
client/server applications, 6-19
analogy, 6-20
COMMO port, main module, 1-3
COMML1 port, main module, 1-3
setting switches, 2-6

COMM2 and COMMBS ports, serial
expander module, 1-4

setting switches, 2-6
communication
direct-connect mode, 1-4
Ethernet, defined rate of, 6-1
parameters
configuring, 3-6
serial ports, setting up, 7-3
setting up, 3-6
standalone mode, 1-4
compiling, C test program, 4-2
configuration files
HOSTS file, 6-4
HOSTS.EQUIV file, 6-5
NETWORKS file, 6-6
PROTOCOLS file, 6-6
SERVICES file, 6-7
STARTINET file, 6-10
configuration functions, DTL, 5-3
configuring
communication parameters, 3-6
control coprocessor, 3-9
default startup parameters, 3-10
Ethernet port, 6-12

configuring (continued)
system memory
module memory, 3-15
non-volatile, 3-11
RAM disk, 3-12
user memory, 3-13
confirming, file passage, 4-5

connecting, control processor,
terminal/personal computer, 3-1

control coprocessor

applications, 1-2

applying power, 2-11

ASCII display functions, CC utility,

5-12

catalog numbers, 1-2

configuring, 3-9
default startup parameters, 3-10
system memory, 3-11

connecting, terminal/personal
computer, 3-1

CSA certification, A-3
direct-connect mode, 1-4
error functions, CC utility, 5-12
hardware overview, 1-3
installing, 2-1
direct-connect mode, 2-7
standalone mode, 2-10
main module, 1-2
memory functions, DTL, 5-5
MSG instructions, 5-8
operating system, 1-7
product compatibility, A-2
product overview, 1-1
product specifications, A-1
program development software, 1-7
programming languages, 1-8
removing
direct-connect mode, 2-11
main module in standalone mode,
2-11
serial expander module, 2-11
serial expander module, 1-2
serial ports, 7-1

standalone mode, 1-4

UL certification, A-4

user interface, 1-6
conversion functions, DTL, 5-4
creating

C test program, 4-1

test directory, command line
interface, 3-9

text file, 3-20
user startup file, 3-19
CSA certification, A-3

D

default startup parameters,
configuring, 3-10
device names, referencing serial ports,
7-4
direct-connect mode
backplane interface
block transfer, 1-5
discrete 1/0, 1-5
installing, control coprocessor, 2-7
preparing programs, 5-14
linking API functions to
programs, 5-15

sample BASIC program, 5-17
sample C program, 5-15
removing, control coprocessor, 2-11
discrete 1/0
direct-connect mode, 1-5
standalone mode, 1-5
disposing, battery, 2-4

DOS-based personal computer, user
interface, 1-6

DTL functions, 5-2
configuration, 5-3
control coprocessor memory, 5-5
conversion, 5-4
how to use, 5-3
read/write access, 5-3
utility, 5-5
DTL_C_DEFINE, 5-3, B-40
DTL_CLOCK, 5-5, B-43

DTL_DEF_AVAIL, 5-3, B-45
DTL_GET_3BCD, 5-5, B-51
DTL_GET_4BCD, 5-5, B-53
DTL_GET_FLT, 5-5, B-47
DTL_GET_WORD, 5-5, B-49
DTL_INIT, 5-3, B-55
DTL_PUT_3BCD, 5-5, B-61
DTL_PUT_4BCD, 5-5, B-63
DTL_PUT_FLT, 5-5, B-57
DTL_PUT_WORD, 5-5, B-59
DTL_READ_W, 5-4, B-65
DTL_READ_W_IDX, B-67
DTL_RMW_W, 5-4, B-70
DTL_RMW_W._IDX, B-73
DTL_SIZE, 5-5, B-76
DTL_TYPE, 5-5, B-78
DTL_UNDEF, 5-3, B-80
DTL_WRITE_W, 5-4, B-82
DTL_WRITE_W_IDX, B-85

E

electrostatic discharge, preventing,
2-2
ESC key, 3-5
Ethernet
cables, 6-2
AUI, 6-2
communication
defined, 6-1
defined rate of, 6-1
configuration files, 6-4
HOSTS file, 6-4
HOSTS.EQUIV file, 6-5
NETWORKS file, 6-6
PROTOCOLS file, 6-6
SERVICES file, 6-7
STARTINET file, 6-10
connecting to network
thick-wire, 6-2
thin-wire, 6-2
hardware Ethernet, 6-11
INTERD daemon, using, 6-22

Internet

FTP utility, 6-12

Telnet utility, 6-17
local area network, 6-1
SNMPD daemon, using, 6-27
socket library, programming, 6-19
transceivers, 6-2

Ethernet port

cable connections, C-5
configuring, 6-12
hardware Ethernet, addresses, 6-3
Internet Protocol, addresses, 6-3
main module, 1-3

F

fault display, serial expander module,

1-4

fault relay

serial expander module, 1-4

wiring, 2-10
file passage, confirming, 4-5
FTP utility

get session, 6-16

send session, 6-13

G
get session, FTP utility, 6-16

H

hardware Ethernet
addresses, 6-11
Ethernet port, addresses, 6-3
hardware overview
control coprocessor, 1-3
main module, 1-3
serial expander module, 1-4

help, OS-9 utilities, command line
interface, 3-7

HOSTS file, configuration files,
Ethernet, 6-4

HOSTS.EQUIV file, configuration
files, Ethernet, 6-5

initialize control coprocessor
functions, CC utility, 5-12

installing
battery, 2-3
control coprocessor, 2-1
direct-connect mode, 2-7
standalone mode, 2-10
keying bands
main module, 2-5
serial expander module, 2-5
serial expander module, 2-9
software, personal computer, 3-2
INTERCHANGE software, using,
6-22
Internet
FTP utility, 6-12
defined, 6-12
get session, 6-16
send session, 6-13
Telnet utility, 6-17

Internet Protocol, Ethernet port,
addresses, 6-3

interpreting faults
main module, LEDs, 8-2
serial expander module
ASCII display, 8-1
LEDs, 8-2

K
keying bands, installing
main module, 2-5
serial expander module, 2-5

keyswitch, serial expander module,
1-4

LEDs
main module, 1-3
serial expander module, 1-4
status
main module, 8-2
serial expander module, 8-2

linking API functions to programs
direct-connect mode, 5-15
standalone mode, 5-18

local area network, Ethernet, 6-1

local chassis, standalone mode, 1-5

lock/unlock functions, TAG, 5-11

main module
battery backup, 1-3
COMMO port, 1-3
COMML1 port, 1-3
control coprocessor, 1-3
Ethernet port, 1-3
hardware overview, 1-3
in standalone mode, removing, 2-11
interpreting faults, LEDs, 8-2
keying bands, installing, 2-5
LEDs, 1-3
RAM memory, 1-3
reset switch, 1-3
setting switches, COMML port, 2-6
standalone mode, removing, 2-11

memory module, loading via
PCBridge, D-4
modes of communication
direct-connect mode, 1-4
standalone mode, 1-4
module memory
NVMM utility, 3-16
system memory, configuring, 3-15
MSG instructions, 5-2
control coprocessor MSG functions,
5-8
how to use, 5-7
PLC-5 programmable controller,
5-7
MSG_CLR_MASK, B-88
MSG_READ_HANDLER, 5-9, B-90
MSG_READ_W_HANDLER, 5-9,
B-94
MSG_SET_MASK, B-98
MSG_TST_MASK, B-100

MSG_WAIT, B-102 DOS constraints, D-9

MSG_WRITE_HANDLER, 5-9, edit, key definitions, D-2
B-105 end-of-line (EOL), characters,
MSG_WRITE_W_HANDLER, 5-9, D-14
B-109 F1 function key, D-4
MSG_ZERO_MASK, B-113 function key, D-2
group permissions, D-18
N highlight menu item, 3-5
NETWORKS file, configuration files, list names to stdout or file, D-20

Ethernet, 6-6

non-volatile, system memory,
configuring, 3-11

NVMM utility, module memory, 3-16

load memory module, D-4
log session to printer, D-3

module parity and CRC, verify and
update, D-15

0OS-9 remote logon, D-4

owner permissions, D-18
PCB.FNC, D-2

PCBCC.BAT, D-7

program development software, 1-7
public permissions, D-18

s—record files, D-12

select menu item, 3-5

status line, description, D-3

0

0S-9, command line interface
accessing, 3-7
creating test directory, 3-9
help, 3-7
returning to PCBridge, 3-9
setting time, 3-8

0S-9, terminal option, D-4

strings, D-2
P
. transfer
PCBridge list, D-4
accessing, from DOS command tag, D-4
line, 3-5 ¢ tor list
batch file transfers, D-4 rans etr ITD :
create, D-
binary file comparison, D-21 dit. D-6
buildlist, D-6, D-7 edh =
modify, D-6

combine several files, D-19
compare binary files, D-21
compiler options

troubleshooting, D-11
update CRC and parity, D-15
using the debugger, D-7

cpp. D-10 tilitie
168, D-10 ”'b'_' S o1
xcc, D-10 nex, -
cudo, D-14
convert bin. D-12
. . exbin, D-
binary file to s-record, D-12]
. fixmod, D-15
s—record to binary, D-12)
) ident, D-17
text files, D-14
. . merge, D-19
cross compiler options, D-9 names. D-20
data dump, D-22 '
0s9cmp, D-21

display module information, D-17

PCBridge (continued)
utilities (continued)
0s9dump, D-22
view, transfer list, D-6
wildcards, D-4
PLC programmable controller
direct-connect mode, 1-4
backplane interface, 1-5
standalone mode, 1-4

PLC-5 programmable controller,
MSG instructions, 5-7

pointers, using, B-2

power supply, 2-2

preparing programs
direct-connect mode, 5-14

linking API functions to
programs, 5-15

sample BASIC program, 5-17
sample C program, 5-15
standalone mode, 5-18

linking API functions to
programs, 5-18

sample BASIC program, 5-20
sample C program, 5-18

sample control logic program,
5-21

preventing, electrostatic discharge,
2-2
product
certification, UL, A-4
compatibility, A-2

overview, control coprocessor, 1-1
specifications, control coprocessor,

A-1
program development software,
PCBridge, 1-7
programming
environment
compiling, C test program, 4-2
creating, C test program, 4-1
sending, C test program, 4-3
languages, 1-8
overview

languages, 1-8
operating system, 1-7
program development software,
1-7
user interface, 1-6
socket library, 6-19

PROTOCOLS file, configuration
files, Ethernet, 6-6

R
RAM
accessing, program example, 4-6
main module, 1-3
system memory, configuring, 3-12
read/write
access functions, DTL, 5-3
TAG, 5-11
remote chassis, standalone mode, 1-5
removing, control coprocessor
direct-connect mode, 2-11
main module in standalone mode,
2-11
serial expander module, 2-11
replacing, battery, 2-3
reset switch, main module, 1-3
return, to previous screen, 3-5

returning to PCBridge, command line
interface, 3-9

S

send session, FTP utility, 6-13
sending

binary file to control coprocessor,

4-3

text file to control coprocessor, 3-21
serial expander module

COMMZ2 and COMMS ports, 1-4

control coprocessor, 1-4

fault display, 1-4

fault relay, 1-4

hardware overview, 1-4

installing, 2-9

interpreting faults

serial expander module (continued)
ASCII display, 8-1
LEDs, 8-2
keying bands, installing, 2-5
keyswitch, 1-4
LEDs, 1-4
removing, control coprocessor, 2-11
setting switches
COMM2 port, 2-6
COMMS3 port, 2-6
serial ports, 7-1
ASCII, 7-1
accessing a port, 7-5
example program, 7-5
using, 7-5
device names, 7-4
RS-485 communication, 7-10
example code, 7-12
RS-422 communication, 7-17

SERVICES file, configuration files,
Ethernet, 6-7

setting switches
main module, COMM1 port, 2-6
serial expander module
COMM2 port, 2-6
COMMS3 port, 2-6

setting time, OS-9 command line
interface, 3-8

setting up

communication parameters, 3-6, 7-3

tmode, 7-3
xmode, 7-3
password file, 3-20
socket library
client/server applications, 6-19
analogy, 6-20
programming, 6-19
software
installing, personal computer, 3-2

PCBridge, accessing from DOS
command line, 3-5

standalone mode
backplane interface

block transfer, 1-5
discrete 1/0, 1-5
installing, 2-10
local chassis, 1-5
preparing programs, 5-18

linking API functions to
programs, 5-18
sample BASIC program, 5-20
sample C program, 5-18
sample control logic program,
5-21
remote chassis, 1-5

STARTINET file, configuration files,
Ethernet, 6-10

status functions
CC utility, 5-13
view coprocessor current status,
3-19
synchronization functions, CC utility,
5-13
system memory, configuring, 3-11
module memory, 3-15
RAM disk, 3-12
user memory, 3-13

T

table configuration functions, TAG,
5-11

tag, keyword, D-6
TAG functions, 5-2

how to use, 5-10

lock/unlock, 5-11

read/write, 5-11

table configuration, 5-11
TAG_DEF_AVAIL, 5-11, B-115
TAG_DEFINE, 5-11, B-116
TAG_GLOBAL_UNDEF, B-119
TAG_LINK, 5-11, B-121
TAG_LOCK, 5-11, B-123
TAG_READ, 5-11, B-125
TAG_READ_W, 5-11, B-127
TAG_UNDEF, 5-11, B-129
TAG_UNDEF_GLOBAL, 5-11

TAG_UNLOCK, 5-11, B-131
TAG_WRITE, 5-11, B-133
TAG_WRITE_W, 5-11, B-135
Telnet utility, 6-17
text file

creating, 3-20

sending, 3-21
tmode, communication parameters,

setting up, 7-3

transceiver, Ethernet, 6-2
transfer, list, file type, D-6

U
UL certification, A-4
user interface
ASCII terminal, 1-6
DOS-based personal computer, 1-6

user memory, system memory,
configuring, 3-13

user startup file
creating, 3-19
example, 3-19
setting up password file, 3-20
using
INTERD daemon, 6-22
pointers, B-2
serial ports
ASCII, 7-5
RS-485 communications, 7-10
RS-422 communications, 7-17
SNMPD daemon, 6-27
utility function
CC_STATUS, 3-19
DTL, 5-5

w
wiring, fault relay, 2-10

X

xmode, communication parameters,
setting up, 7-3

ASCII Character Codes

Char Decimal Hex Char Decimal Hex Char Decimal Hex Char Decimal Hex
[ctrl-@] NUL 0 00 SPACE 32 20 @ 64 40 ‘ 96 60
[ctrl-A] SOH 1 01 ! 33 21 A 65 4 a 97 61
[ctr-B] STX 2 02 ? 34 22 B 66 42 c 99 63
[ct-C] ETX 3 03 # 35 23 C 67 43 b 98 62
[ctr-D] EOT 4 04 $ 36 24 D 68 44 d 100 64
[ctr-E] ENQ 5 05 % 37 25 E 69 45 e 101 65
[ctrl-F] ACK 6 06 & 38 26 F 70 56 f 102 66
[ctr-G] BEL 7 07 : 39 27 G 7 47 g 103 67
[ctr-H] BS 8 08 (40 28 H 72 48 h 104 68
[ete-] HT 9 09) 41 29 I 73 49 [105 69
[etr-J] LF 10 0A * 42 2A J 74 4A j 106 6A
[etr-K] VT 1 0B + 43 2B K 75 4B k 107 6B
[etrl-L] FF 12 0C , 44 2C L 76 4C | 108 6C
[ctr-M] CR 13 0D - 45 2D M 77 4D m 109 6D
[ctr-N] SO 14 OE . 46 2E N 78 4E n 110 6E
[ctr-0] SI 15 OF / 47 2F 0 79 4F 0 111 6F
[ctrl-P] DLE 16 10 0 48 30 P 80 50 p 112 70
[ctr-Q] DC1 17 1 1 49 31 Q 81 51 q 113 71
[ctr-R] DC2 18 12 2 50 32 R 82 52 r 114 72
[ctr-S] DC3 19 13 3 51 33 S 83 53 s 115 73
[ctr-T] DC4 20 14 4 52 34 T 84 54 t 116 74
[ctr-U] NAK 21 15 5 53 35 U 85 55 u 17 75
[et-V] SYN 22 16 6 54 36 v 86 56 v 118 76
[ctr-W] ETB 23 17 7 55 37 W 87 57 w 119 77
[ctr-X] CAN 24 18 8 56 38 X 88 58 X 120 78
[ctr-Y] EM 25 19 9 57 39 Y 89 59 y 121 79
[ctrl-Z] SUB 26 1A : 58 3A Z 90 5A z 122 7A
ctrl-[ESC 27 1B ; 59 3B [91 5B { 123 7B
[ct] FS 28 1C < 60 3C \ 92 5C | 124 7C
ctrl] GS 29 1D = 61 3D | 93 5D } 125 7D
[ctr-"] RS 30 1E > 62 3E " 94 5E - 126 7E
[ctr-_] US 31 1F ? 63 3F _ 95 5F DEL 127 7F

) ALLEN-BRADLEY

Allen-Bradley has been helping its customers improve productivity and quality for 90 years
A ROCKWELL INTERNATIONAL COMPANY

A-B designs, manufactures and supports a broad range of control and automation products
worldwide. They include logic processors, power and motion control devices, man-machine

interfaces and sensors. Allen-Bradley is a subsidiary of Rockwell International, one of the
world’s leading technology companies.

With major offices worldwide.— -

Algeria * Argentina ¢ Australia » Austria « Bahrain ¢ Belgium ¢ Brazil « Bulgaria « Canada « Chile « China, PRC « Colombia » Costa Rica ¢ Croatia « Cyprus « Czech Republic
Denmark ¢ Ecuador « Egypt e El Salvador « Finland « France « Germany ¢ Greece « Guatemala * Honduras « Hong Kong ¢ Hungary ¢ Iceland « India * Indonesia * Israel « Italy
Jamaica * Japan « Jordan « Korea « Kuwait* Lebanon « Malaysia Mexico « New Zealand » Norway « Oman ¢ Pakistan « Peru « Philippines » Poland Portugal » Puerto Rico

Qatar» Romania * Russia-CIS « Saudi Arabia Singapore ¢ Slovakia s Slovenia * South Africa, Republic « Spain ¢ Switzerland » Taiwan * Thailand « The Netherlands « Turkey
United Arab Emirates * United Kingdom ¢ United States « Uruguay Venezuela ¢ Yugoslavia

Allen-Bradley Headquarters, 1201 South Second Street, Milwaukee, WI 53204 USA, Tel: (1) 414 382-2000 Fax: (1) 414 382-4444

Publication 1771-6.5.95—December 1994

PN 955119-26
Supersedes 1771-6.5.95—March 1993 Copyright 1994 Allen-Bradley Company, Inc. Printed in USA

